
1

Operating Systems:
Lecture 4

Basic Multithreaded Programming
Jinwoo Kim

jwkim@jjay.cuny.edu

2
Overview

• What is multithreaded programming?

• Why do you need it?

• Basics of multithreaded programming and example
codes

3

Basic Concept

• The Operating System that you use was probably
written with the idea of threads, or processes in
mind
– You can run programs of your choosing

• A process is a running program, and a program is a
set of instructions that the machine can understand

• You can run more than one process at a time
– When you open up separate programs, they run as

processes in their own separate memory space
– Each program running has a chunk of memory to which it

and only it can use
– That's how many programs can run without changing

variables and states of other running programs

4

Basic Concept (Continued)

• Imagine for a second what it would be like to run a
program in the same memory space as another
running process

• This process running inside of another processes'
memory space is called a “Thread”
– A thread is a path of execution
– A process requires at least one thread but it may contain

more than one threads
– If the process is closed, all the threads in the process are

killed automatically

5

Benefits of Threads

• Efficient
– The multithreaded application uses CPU 100% effectively

• Economical
– When we create a process, it will take memory space
– Multithreaded application shares the same process

memory space
– Every thread contains stack
– So the thread takes up less memory usage compared to a

process

6
How does a Thread work?

• The Operating System has a scheduler for each
thread (process) that is currently running

• It divides up time slices for each of them which are
executed in the order that the Operating System
seems fit

• It simply runs each one in some arbitrary order for a
set number of milliseconds and then switches
between them constantly

7
Is it fast?

• Of course! One way to think about it is like this: The
more processes that your program has running, the
more time that your program can get from the
system

• The switches from one thread to another (or from
one process to another) happens so quickly that the
entire system seems to be doing many different
things at once!

8
Is there a lot of overhead involved?

• Not much
– Compared to multiple processes

• We will see from example code
– A simple application that creates 3 threads and runs them

simultaneously

9
Example code

// First, always include <windows.h> for all the Windows specific thread
information
#include <windows.h>
#include <iostream.h>
#define MAX_THREADS 3

// Prototypes are good and handy, but not necessary in this example.
// These three functions are run by each of our three threads
// Please note how the functions are declared:
// In Windows, thread functions MUST be declared like this:
// DWORD WINAPI <name>(LPVOID)
// In short,
// Return value *must* be DWORD WINAPI
// And the parameter must be LPVOID

DWORD WINAPI genericThreadFunc1(LPVOID);
DWORD WINAPI printString(LPVOID);
DWORD WINAPI printNumber(LPVOID);

10
Example code (Continued)

// We need an array of Handles to threads
HANDLE hThreads[MAX_THREADS];

// ...an array of thread id's
DWORD id[MAX_THREADS];

// And a waiter (which I'll explain later)
DWORD waiter;

11
Example code (Continued)

// Here are the three functions that are defined.
// They do trivial things and should be mostly self explanatory.

DWORD WINAPI genericThreadFunc1(LPVOID n)
{

cout << "Thread started (genericThreadFunc1)..." << endl;
for(int i = 0; i < 100; i++) {

cout << "threadFunc1 says: " << i << endl;
}
cout << "...(genericThreadFunc1) Thread terminating." << endl;
return (DWORD)n;

}

12
Example code (Continued)

DWORD WINAPI printString(LPVOID n)
{

cout << "Thread started (printString)..." << endl;

// NOTE: In the next line, we make a pointer and cast what was passed in.
// This is how you use the LPVOID parameters passed into the
// CreateThread call (below).

char* str = (char*)n;
for(int i = 0; i < 50; i++) {

cout << "printString says: " << str << endl;
}
cout << "...(printString) Thread terminating." << endl;
return (DWORD)n;

}

13
Example code (Continued)

DWORD WINAPI printNumber(LPVOID n)
{

cout << "Thread started (printNumber)..." << endl;
int num = (int)n;
for (int i = num; i < (num + 100); i++) {

cout << "printNumber says: " << i << endl;
}
cout << "...(printHello) Thread terminating." << endl;
return (DWORD)n;

}

14
Example code (Continued)

// Get ready, because here's where all the *REAL* magic happens
int main(int argc, char* argv[])
{

int CONSTANT = 2000;
char myString[20];
strcpy(myString,"Threads are Easy!");

// Here is where we call the CreateThread Windows API Function that actually
// creates and begins execution of a thread.
// Please read your help files for what each parameter does on
// your Operating system.

15
Example code (Continued)

// Here's some basics:
// Parameter 0: Lookup
// Parameter 1: Stack size (0 is default which means 1MB)
// Parameter 2: The function to run with this thread
// Parameter 3: Any parameter that you want to pass to the thread function
// Parameter 4: Lookup
// Parameter 5: Once thread is created, an id is put in this variable passed in

hThreads[0] = CreateThread(NULL,0,genericThreadFunc1,(LPVOID)0,NULL,&id[0]);
hThreads[1] = CreateThread(NULL,0,printString,(LPVOID)myString,NULL,&id[1]);
hThreads[2] = CreateThread(NULL,0,printNumber,(LPVOID)CONSTANT,NULL,&id[2]);

16
Example code (Continued)

// Now that all three threads are created and running, we need to stop
// the primary thread (which is this program itself - Remember that once
// "main" returns, our program exits)
// so that our threads have time to finish. To do this, we do what is
// called "Blocking".
// We're going to make main just stop and wait until all three threads
// are done.
// This is done easily with the next line of code. Please read the help
// file about the specific API call "WaitForMultipleObjects".

waiter = WaitForMultipleObjects(MAX_THREADS, hThreads, TRUE, INFINITE);

17
Example code (Continued)

// After all three threads have finished their task, "main" resumes and
// we're now ready to close the handles of the threads. This is just a
// bit of clean up work.
// Use the CloseHandle (API) function to do this. (Look it up in the
// help files as well)

for(int i = 0; i < MAX_THREADS; i++) {
CloseHandle(hThreads[i]);

}

return 0;
}

18
Example code using Windows API in the Textbook

// First, always include <windows.h> for all the Windows specific thread
// information
#include <windows.h>
#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) */
/* the thread runs in this separate function */

DWORD WINAPI Summation(LPVOID Param)
{

DWORD Upper = *(DWORD*)Param;
for (DWORD i=0; i <= Upper; i++)

Sum += i;
return 0;

}

19Example code using Windows API in the Textbook
(Continued)

int main(int argc, char* argv[])
{

DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
/* perform some basic error checking */
if (argc != 2) {

fprintf(stderr, “An integer parameter is required\n”);
return -1;

}

Param = atoi(argv[1]);
if (Param < 0) {

fprintf(stderr, “An integer >= 0 is required\n”);
return -1;

}

20Example code using Windows API in the Textbook
(Continued)

/* create the thread */
ThreadHandle = CreateThread(

NULL, // default security attributes
0, // default stack size
Summation, // thread function
&Param, // parameter to thread function
0, // default creation flags
&ThreadId); // returns the thread identifier

if (ThreadHandle != NULL) {
// now wait for the thread to finish
WaitForSingleObject(ThreadHandle, INFINITE);
// close the thread handle
CloseHandle(ThreadHandle);
printf(“sum = %d\n”, Sum);

}
}

