
1

Operating Systems:

Lecture 2

Operating System Structures

Jinwoo Kim
jwkim@jjay.cuny.edu

2

Chapter 2: Operating-System Structures

• Operating System Services

• User Operating System Interface

• System Calls

• Types of System Calls

• System Programs

• Operating System Design and Implementation

• Operating System Structure

• Virtual Machines

• Operating System Generation

• System Boot

3

Objectives

• To describe the services an operating system
provides to users, processes, and other systems

• To discuss the various ways of structuring an
operating system

• To explain how operating systems are installed and
customized and how they boot

4

Operating System Services

• Operating systems provide an environment for execution of
programs and services to programs and users

• One set of operating-system services provides functions that are
helpful to the user:

– User interface - Almost all operating systems have a user interface (UI)
– Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch

– Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

– I/O operations - A running program may require I/O, which may involve
a file or an I/O device.

– File-system manipulation
– The file system is of particular interest. Obviously, programs need to read and

write files and directories, create and delete them, search them, list file
Information, permission management

5

Operating System Services (Cont.)

• One set of operating-system services provides functions that are
helpful to the user (Cont.):

– Communications – Processes may exchange information, on the
same computer or between computers over a network

– Communications may be via shared memory or through message passing
(packets moved by the OS)

– Error detection – OS needs to be constantly aware of possible errors
– May occur in the CPU and memory hardware, in I/O devices, in user program

– For each type of error, OS should take the appropriate action to ensure
correct and consistent computing

– Debugging facilities can greatly enhance the user’s and programmer’s
abilities to efficiently use the system

6

Operating System Services (Cont.)

• Another set of OS functions exists for ensuring the efficient
operation of the system itself via resource sharing

– Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of them

– Many types of resources - Some (such as CPU cycles, main memory, and
file storage) may have special allocation code, others (such as I/O devices)
may have general request and release code.

– Accounting - To keep track of which users use how much and
what kinds of computer resources

– Protection and security - The owners of information stored in a
multi-user or networked computer system may want to control use
of that information, concurrent processes should not interfere with
each other

– Protection involves ensuring that all access to system resources is
controlled

– Security of the system from outsiders requires user authentication, extends
to defending external I/O devices from invalid access attempts

A View of Operating System Services

8

User Operating System Interface - CLI

• CLI allows direct command entry

– Sometimes implemented in kernel, sometimes by systems
program

– Sometimes multiple flavors implemented – shells

– Primarily fetches a command from user and executes it

– Sometimes commands built-in, sometimes just names of
programs

– If the latter, adding new features doesn’t require shell modification

Bourne Shell Command Interpreter

10

User Operating System Interface - GUI

• User-friendly desktop metaphor interface

– Usually mouse, keyboard, and monitor

– Icons represent files, programs, actions, etc.

– Various mouse buttons over objects in the interface cause various
actions

– provide information, options, execute function, open directory (known as a
folder)

– Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces

– Microsoft Windows is GUI with CLI “command” shell

– Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available

– Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

Touchscreen Interfaces

• Touchscreen devices require
new interfaces

– Mouse not possible or not
desired

– Actions and selection based
on gestures

– Virtual keyboard for text entry

– Voice commands

The Mac OS X GUI

13

System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX
API for POSIX-based systems (including virtually all versions
of UNIX, Linux, and Mac OS X), and Java API for the Java
virtual machine (JVM)

• Why use APIs rather than system calls?

• Note that the system-call names used throughout this text are
generic

14

Example of System Calls

• System call sequence to copy the contents of one file to
another file

15

Example of Standard API

• Consider the ReadFile() function in the Win32 API

– A function for reading from a file

• A description of the parameters passed to ReadFile()

– HANDLE file—the file to be read

– LPVOID buffer—a buffer where the data will be read into and written
from

– DWORD bytesToRead—the number of bytes to be read into the buffer

– LPDWORD bytesRead—the number of bytes read during the last read

– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Example of Standard API

17

System Call Implementation

• Typically, a number associated with each system call

– System-call interface maintains a table indexed according to
these numbers

• The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return
values

• The caller need to know nothing about how the system call is
implemented

– Just needs to obey API and understand what OS will do as a
result call

– Most details of OS interface hidden from programmer by API
– Managed by run-time support library (set of functions built into libraries

included with compiler)

18

API – System Call – OS Relationship

System Call Parameter Passing

• Often, more information is required than simply identity of
desired system call

– Exact type and amount of information vary according to OS and
call

• Three general methods used to pass parameters to the OS

– Simplest: pass the parameters in registers
– In some cases, may be more parameters than registers

– Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register

– This approach taken by Linux and Solaris

– Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

– Block and stack methods do not limit the number or length of
parameters being passed

Parameter Passing via Table

Types of System Calls

• Process control

– create process, terminate process

– end, abort

– load, execute

– get process attributes, set process attributes

– wait for time

– wait event, signal event

– allocate and free memory

– Dump memory if error

– Debugger for determining bugs, single step execution

– Locks for managing access to shared data between processes

Types of System Calls

• File management

– create file, delete file

– open, close file

– read, write, reposition

– get and set file attributes

• Device management

– request device, release device

– read, write, reposition

– get device attributes, set device attributes

– logically attach or detach devices

Types of System Calls (Cont.)

• Information maintenance

– get time or date, set time or date

– get system data, set system data

– get and set process, file, or device attributes

• Communications

– create, delete communication connection

– send, receive messages if message passing model to host
name or process name

– From client to server

– Shared-memory model create and gain access to memory
regions

– transfer status information

– attach and detach remote devices

Types of System Calls (Cont.)

• Protection

– Control access to resources

– Get and set permissions

– Allow and deny user access

Examples of Windows and Unix System Calls

26

Standard C Library Example

• C program invoking printf() library call, which calls write()
system call

27

MS-DOS execution

(a) At system startup (b) running a program

• Single-tasking

• Shell invoked when system
booted

• Simple method to run
program

– No process created

• Single memory space

• Loads program into memory,
overwriting all but the kernel

• Program exit -> shell
reloaded

28

FreeBSD Running Multiple Programs

• Unix variant

• Multitasking

• User login -> invoke user’s choice of
shell

• Shell executes fork() system call to
create process

– Executes exec() to load program into
process

– Shell waits for process to terminate
or continues with user commands

• Process exits with:

– code = 0 – no error

– code > 0 – error code

29

System Programs

• System programs provide a convenient environment for program
development and execution. They can be divided into:

– File manipulation

– Status information

– File modification

– Programming language support

– Program loading and execution

– Communications

– Application programs

• Most users’ view of the operating system is defined by system
programs, not the actual system calls

30

System Programs

• Provide a convenient environment for program development
and execution

– Some of them are simply user interfaces to system calls; others
are considerably more complex

• File management - create, delete, copy, rename, print, dump,
list, and generally manipulate files and directories

• Status information

– Some ask the system for info - date, time, amount of available
memory, disk space, number of users

– Others provide detailed performance, logging, and debugging
information

– Typically, these programs format and print the output to the
terminal or other output devices

– Some systems implement a registry - used to store and retrieve
configuration information

31

System Programs (cont’d)

• File modification

– Text editors to create and modify files

– Special commands to search contents of files or perform
transformations of the text

• Programming-language support

– Compilers, assemblers, debuggers and interpreters sometimes
provided

• Program loading and execution

– Absolute loaders, relocatable loaders, linkage editors, and
overlay-loaders, debugging systems for higher-level and machine
language

• Communications

– Provide the mechanism for creating virtual connections among
processes, users, and computer systems

– Allow users to send messages to one another’s screens, browse
web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

System Programs (Cont.)

• Background Services

– Launch at boot time
– Some for system startup, then terminate

– Some from system boot to shutdown

– Provide facilities like disk checking, process scheduling, error
logging, printing

– Run in user context not kernel context

– Known as services, subsystems, daemons

• Application programs

– Don’t pertain to system

– Run by users

– Not typically considered part of OS

– Launched by command line, mouse click, finger poke

33

Operating System Design and Implementation

• Design and Implementation of OS not “solvable”, but some
approaches have proven successful

• Internal structure of different Operating Systems can vary
widely

• Start by defining goals and specifications

• Affected by choice of hardware, type of system

• User goals and System goals

– User goals – operating system should be convenient to use, easy
to learn, reliable, safe, and fast

– System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

34Operating System Design and
Implementation (Cont.)

• Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

• Mechanisms determine how to do something; policies decide
what will be done

– The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to be
changed later

• Specifying and designing an OS is highly creative task of
software engineering

Implementation

• Much variation

– Early OSes in assembly language

– Then system programming languages like Algol, PL/1

– Now C, C++

• Usually a mix of languages

– Lowest levels in assembly

– Main body in C

– Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

• More high-level language easier to port to other hardware

– But slower

• Emulation can allow an OS to run on non-native hardware

Operating System Structure

• General-purpose OS is very large program

• Various ways to structure ones

– Simple structure – MS-DOS

– More complex -- UNIX

– Layered – an abstraction

– Microkernel -Mach

37

Simple Structure – MS-DOS

• MS-DOS – written to provide
the most functionality in the
least space

– Not divided into modules

– Although MS-DOS has some
structure, its interfaces and
levels of functionality are not
well separated

Non-Simple Structure -- UNIX

• UNIX – limited by hardware functionality, the original UNIX
operating system had limited structuring

• The UNIX OS consists of two separable parts

– Systems programs

– The kernel
– Consists of everything below the system-call interface and above the

physical hardware

– Provides the file system, CPU scheduling, memory management, and
other operating-system functions; many functions for one level

39

UNIX System Structure

Beyond simple but not fully layered

40

Layered Approach

• The operating system is
divided into several layers
(levels), each built on top of
lower layers

• The bottom layer (layer 0), is
the hardware; the highest
(layer N) is the user interface

• With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

Microkernel System Structure

• Moves as much from the kernel into user space

• Mach example of microkernel

– Mac OS X kernel (Darwin) partly based on Mach

• Communication takes place between user modules using
message passing

• Benefits:

– Easier to extend a microkernel

– Easier to port the operating system to new architectures

– More reliable (less code is running in kernel mode)

– More secure

• Detriments:

– Performance overhead of user space to kernel space
communication

Microkernel System Structure

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

Modules

• Many modern operating systems implement loadable
kernel modules

– Uses object-oriented approach

– Each core component is separate

– Each talks to the others over known interfaces

– Each is loadable as needed within the kernel

• Overall, similar to layers approach but with more
flexible

– Linux, Solaris, etc

44

Solaris Modular Approach

Hybrid Systems

• Most modern operating systems are not one pure model

– Hybrid combines multiple approaches to address performance,
security, usability needs

– Linux and Solaris kernels in kernel address space, so monolithic,
plus modular for dynamic loading of functionality

– Windows mostly monolithic, plus microkernel for different
subsystem personalities

• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa
programming environment

– Below is kernel consisting of Mach microkernel and BSD Unix
parts, plus I/O kit and dynamically loadable modules (called kernel
extensions)

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

iOS

• Apple mobile OS for iPhone, iPad

– Structured on Mac OS X, added
functionality

– Does not run OS X applications natively

– Also runs on different CPU
architecture (ARM vs. Intel)

– Cocoa Touch Objective-C API for
developing apps

– Media services layer for graphics, audio,
video

– Core services provides cloud computing,
databases

– Core operating system, based on Mac OS X
kernel

Android

• Developed by Open Handset Alliance (mostly Google)

– Open Source

• Similar stack to IOS

• Based on Linux kernel but modified

– Provides process, memory, device-driver management

– Adds power management

• Runtime environment includes core set of libraries and
Dalvik virtual machine

– Apps developed in Java plus Android API
– Java class files compiled to Java bytecode then translated to

executable than runs in Dalvik VM

• Libraries include frameworks for web browser (webkit),
database (SQLite), multimedia, smaller libc

Android Architecture
Applications

Application Framework

Android runtime

Core Libraries

Dalvik

virtual machine

Libraries

Linux kernel

SQLite openGL

surface

manager

webkit libc

media

framework

Operating-System Debugging

• Debugging is finding and fixing errors, or bugs

• OS generate log files containing error information

• Failure of an application can generate core dump file capturing
memory of the process

• Operating system failure can generate crash dump file
containing kernel memory

• Beyond crashes, performance tuning can optimize system
performance

– Sometimes using trace listings of activities, recorded for analysis

– Profiling is periodic sampling of instruction pointer to look for statistical
trends

Kernighan’s Law: “Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to debug it.”

Performance Tuning

• Improve performance by
removing bottlenecks

• OS must provide means
of computing and
displaying measures of
system behavior

• For example, “top”
program or Windows
Task Manager

DTrace

• DTrace tool in Solaris,
FreeBSD, Mac OS X
allows live
instrumentation on
production systems

• Probes fire when code is
executed within a
provider, capturing state
data and sending it to
consumers of those
probes

• Example of following
XEventsQueued system
call move from libc library
to kernel and back

Dtrace (Cont.)

• DTrace code to record amount
of time each process with
UserID 101 is in running mode
(on CPU) in nanoseconds

Operating System Generation

Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

SYSGEN program obtains information concerning the
specific configuration of the hardware system

Used to build system-specific compiled kernel or system-tuned

Can general more efficient code than one general kernel

55

Virtual Machines

• A virtual machine takes the layered approach to its
logical conclusion. It treats hardware and the operating
system kernel as though they were all hardware

• A virtual machine provides an interface identical to the
underlying bare hardware

• The operating system creates the illusion of multiple
processes, each executing on its own processor with its
own (virtual) memory

56

Virtual Machines (Cont.)

• The resources of the physical computer are shared to create
the virtual machines

– CPU scheduling can create the appearance that users have their
own processor

– Spooling and a file system can provide virtual card readers and
virtual line printers

– A normal user time-sharing terminal serves as the virtual machine
operator’s console

57

Virtual Machines (Cont.)

(a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

58

Virtual Machines (Cont.)

• The virtual-machine concept provides complete protection of
system resources since each virtual machine is isolated from
all other virtual machines

– This isolation, however, permits no direct sharing of resources

• A virtual-machine system is a perfect vehicle for operating-
systems research and development.

– System development is done on the virtual machine, instead of
on a physical machine and so does not disrupt normal system
operation

• The virtual machine concept is difficult to implement due to
the effort required to provide an exact duplicate to the
underlying machine

59

VMware Architecture

60

The Java Virtual Machine

61

System Boot

• Operating system must be made available to hardware so
hardware can start it

– Small piece of code – bootstrap loader, locates the kernel, loads
it into memory, and starts it

– Sometimes two-step process where boot block at fixed location
loads bootstrap loader

– When power initialized on system, execution starts at a fixed
memory location

– Firmware used to hold initial boot code

62

The Boot Process – Big Picture

• Each time a computer is turned on, it must familiarize itself with

its internal components and the peripheral world

– This start-up process is called the “boot process”

• The basic steps of “Boot Process”

– CPU reset and run the bootstrap code in ROM BIOS (Basic Input

Output System)

– BIOS: firmware containing code for Input/output between OS and hardware

– Stores inside ROM to maintain code without power

– Pre-POST (Power-on Self Test)

– POST

– Disk boot

– MBR

– VBR

63

The Boot Process – Big Picture (Continued)

• POST results are compared with CMOS chip

• CMOS chip stores information about the computer drives,

keyboard, monitor, current date and time

• Problem may result in beeps (example code on next slide), or

error messages or simply fail to boot up

• If BIOS POST completes, BIOS instructs the CPU to look for a

disk containing an Operating System

64

Example POST Beep Codes

• BIOS vendors used a sequence of beeps from the

motherboard-attached loudspeaker to signal error codes

– Original IBM POST beep codes

– Intel-based Macs

65

Common Boot Process

66

The Boot Process – ROM BIOS

• ROM BIOS stage: the first stage in “Boot Process” is to get the

CPU started (reset) with an electrical pulse

– By power on switch button or over network

– Once CPU is reset, PC is initialized with 0xF000

– Address of bootstrap program in the ROM BIOS (Basic Input and Output

System)

– Bootstrap program in ROM BIOS chips that contain computer start-

up instructions starts

67

The Boot Process – Pre-POST

• BIOS does a series of tests to test computer hardware to be

sure it is connected and operating correctly

– Pre-POST: basic test for POST

• Pre-POST (Power on Self Test) freeze is indicative of some

sort of hardware failure

• If test results matches with stored value in ROM BIOS,

continue to POST

68

The Boot Process – POST

• 1st Step: System bus test

– Power-On Self Test (POST)

– Send special signal to the system buses to ensure that the bus is

properly functioning

– If it passes, POST continues to the next step

• 2nd Step: Real-Time Clock (RTC) or System clock test

– Check system clock

– Stores system date and time and also keeps all system electrical signals in

synchronization

– Inside the CMOS chip as a form of RTC/NVRAM

– NVRAM (Non-Volatile RAM): stores basic system information for booting such

as size of memory, drive type, etc

69

The Boot Process – POST (Continued)

• 3rd Step: System’s Video Components test

– The video memory is tested, as are the signals sent by this device

– If it passes, POST continues to the next step

• 4th Step: Main Memory (RAM) test

– The data is written to RAM

– The data is read and compared to the original data sent

– If it matches, it passes and go to the next step

• 5th Step: Keyboard test

– Check whether the keyboard is properly attached and whether any

keys are pressed

– If it passes, go to next step

70

The Boot Process – POST (Continued)

• 6th Step: Drive test

– Sends signals over specific bus pathways to determine which

drives (floppies, CD & DVDs, hard disk drives) are available to the

system

– If it passes, go to next step

• 7th Step: Check the POST result

– POST results are compared to the

expected system settings store in CMOS

– If it passes, go to next step

• 8th Step: Additional BIOS loading

– Load additional BIOS (SCSI BIOS, etc.) to RAM if necessary

71

The Boot Process -- Disk Boot

• If BIOS POST completes, the bootstrap code in ROM BIOS

instructs the CPU to look for a disk containing an Operating

System according to the order set forth in the boot sequence

– The place where this information is stored is called the “master

boot record” (MBR)

– Also referred to as the “master boot sector” or “boot sector”

• The MBR is always located as cylinder 0, head 0, and sector 1

72

The Boot Process -- Disk Boot (Continued)

• The MBR contains following structure

– Master Partition Table

– This small table contains the description of the partitions that are contained

on the hard disk

– There is only room for the information describing 4 (primary) partitions

– Master Boot Code

– This small initial boot program loaded and executed to start the boot

process by BIOS

– Since the master boot code is the first program executed when you turn on your PC,

this is a favorite place for virus writers to target

• Jump to the Volume Boor Record (VBR) of bootable partition

– VBR code searches for and runs the OS on that volume

73

The Boot Process (Continued)

74

DOS Boot Process

75

Windows NT/2000/XP Boot Process

76

Windows Vista/7 Boot Process

77
Windows 10 Boot sequence flowchart

78

Controlled Boot Environment

• Boot the computer and load an OS in a forensically sound

manner so the evidentiary media is not changed

• When the disk contains evidence, the ability to prevent a

computer from using the operating system on the hard disk is

crucial

– Ex) In Intel-based machine, a floppy diskette containing OS can be

inserted to prevent the OS on the hard disk from loading

• Why is it important to have a controlled boot environment?

