
1

Programming Languages:

Lecture 2

Chapter 2: Evolution of the Major

Programming Languages

Jinwoo Kim
jwkim@jjay.cuny.edu

mailto:jwkim@jjay.cuny.edu

2

Chapter 2 Topics

• History of Computers

• Zuse’s Plankalkul

• Minimal Hardware Programming: Pseudocodes

• The IBM 704 and Fortran

• Functional Programming: LISP

• The First Step Toward Sophistication: ALGOL 60

• Computerizing Business Records: COBOL

• The Beginnings of Timesharing: BASIC

3

Chapter 2 Topics (continued)

• Everything for Everybody: PL/I

• Two Early Dynamic Languages: APL and
SNOBOL

• The Beginnings of Data Abstraction: SIMULA 67

• Orthogonal Design: ALGOL 68

• Some Early Descendants of the ALGOLs

• Programming Based on Logic: Prolog

• History's Largest Design Effort: Ada

4

Chapter 2 Topics (continued)

• Object-Oriented Programming: Smalltalk

• Combining Imperative ad Object-Oriented
Features: C++

• An Imperative-Based Object-Oriented Language:
Java

• Scripting Languages: JavaScript, PHP, Python,
and Ruby

• A C-Based Language for the New Millennium: C#

• Markup/Programming Hybrid Languages

5

• Who invented computers?
– Contribution from many inventors

– A computer is a complex piece of machinery made up of many
parts, each of which can be considered a separate invention.

• In 1936, Konrad Zuse made a mechanical calculator using three
basic elements: a control, a memory, and a calculator for the
arithmetic and called it Z1, the first binary computer
– First freely programmable computer

– Konrad Zuse wrote the first algorithmic programming language
called 'Plankalkül' in 1946, which he used to program his computers

– He wrote the world's first chess-playing program using Plankalkül

History of Computers

Konrad Zuse's Z1 Circa

1938

6

• Professor John Atanasoff and his graduate student Clifford Berry
built the world's first electronic-digital computer at Iowa State
University between 1939 and 1942

– ABC computer

– Several innovations in computing, including a binary system of
arithmetic, parallel processing, and a separation of memory and
computing functions

• In 1946, John Mauchly and J Presper Eckert developed the
ENIAC I (Electrical Numerical Integrator And Calculator)

– By support from U.S. military

– Considered as first modern computer

– The ENIAC contained 17,468 vacuum tubes, along with 70,000
resistors, 10,000 capacitors, 1,500 relays, 6,000 manual switches
and 5 million soldered joints

– It covered 1800 square feet (167 square meters) of floor space,
weighed 30 tons, consumed 160 kilowatts of electrical power

History of Computers (Continued)

7

• In 1951, John Presper Eckert & John W. Mauchly built first
commercial computer called “UNIVAC”

– By doing the research for their customer, United States Census
Bureau

– The Bureau needed a new computer to deal with the exploding U.S.
population (the beginning of the famous babyboom)

– Able to pick presidential winners (Eisenhower vs. Stevenson)

• In 1953, IBM enters into “The History of Computers” with IBM
701 EDPM Computer

– In 1954, the first successful high level programming language,
Fortran, was developed by John Backus & IBM

• In 1958, The Integrated Circuit, otherwise known as “The Chip”,
was developed by Jack Kilby & Robert Noyce

History of Computers (Continued)

8

• In 1964, IBM unveiled first “mainframe computer” with the
System/360
– Cost to develop: $5 billion ($30 billion in today's dollars)

– But the gamble paid off: company's revenue jumped from $3.2 billion the year
it was introduced to $7.5 billion in1970

– Major breakthrough in the technology and business worlds
– Allowed companies to perform multiple tasks at the same time on a

single machine
– Before then, a user would have to schedule time on the company computerto

do a specific task, whether to process payroll or analyze businessexpenses

– Dominated computing industry until PC revolution in the 1980s

• In 1969, “ARPAnet”, the origin of the Internet, was constructed
– Packet-switching development
– ARPA introduces network for defense and develops e-mail and US

universities join network in 1970

• In 1971, Faggin, Hoff & Mazor made “Intel 4004 Computer
Microprocessor”
– The first microprocessor

History of Computers (Continued)

9

• In 1981, IBM introduced “IBM PC - Home Computer” and
Microsoft revealed its “MS-DOS” Operating System

• In 1983, The first home computer with a GUI, graphical user
interface, was developed by Apple

• In 1985, Microsoft begins the friendly war with Apple with its
launch of Microsoft Windows operating system

• By the early 1990s, sales of mainframes, then IBM's main
product, were dropping dramatically in the face of stiff
competition from rivals such as Sun Microsystems

– Also, instead of big boxes in the back room, companies
turned to servers that connected PCs in a network

– People predicted it will extinct in decades

History of Computers (Continued)

10

• In 1991, “Mosaic”, the first properly developed web-
browser, takes Internet by storm

• We live in the age of “embedded computer” world now

– Downshift of “center of gravity of computing”

– But at the same time, IBM sells record number of mainframe
computers

– IBM sold $4.2 billion worth of mainframes in 2003, up 6 percent
from the previous year

• So, we have a history of computers about 70 years!

History of Computers (Continued)

11

Genealogy of Common Languages

12

Zuse’s Plankalkül

• Never implemented

• Advanced data structures

– floating point, arrays, records

13

Plankalkül Syntax

• An assignment statement to assign the expression
A[4] + 1 to A[5]

| A + 1 => A

V | 4 5 (subscripts)

S | 1.n 1.n (data types)

14

Minimal Hardware Programming: Pseudocodes

• What was wrong with using machine code?

– Poor readability

– Poor modifiability

– Expression coding was tedious

– Machine deficiencies--no indexing or floating point

15

Pseudocodes: Short Code

• Short Code developed by Mauchly in 1949 for
BINAC computers

– Expressions were coded, left to right

– Example of operations:

01 – 06 abs value

02) 07 +

03 = 08 pause

04 / 09 (

1n (n+2)nd power

2n (n+2)nd root

4n if <= n

58 print and tab

(Example)

X0 = SQRT(ABS(Y0))

would be coded as

00 X0 03 20 06Y0

16

Pseudocodes: Speedcoding

• Speedcoding developed by Backus in 1954 for IBM
701

• Pseudo ops for arithmetic and math functions

– Conditional and unconditional branching

– Auto-increment registers for array access

– Slow!

– Only 700 words left for user program

17

Pseudocodes: Related Systems

• The UNIVAC Compiling System

– Developed by a team led by Grace Hopper

– Pseudocode expanded into machine code

• David J. Wheeler (Cambridge University)

– developed a method of using blocks of re-locatable
addresses to solve the problem of absolute addressing

18

IBM 704 and Fortran

• Fortran 0: 1954 - not implemented
– John Backus and his IBM group wrote a report

– “IBM Mathematical Formula Translating System: Fortran”

• Fortran I:1957

– Designed for the new IBM 704, which had index registers
and floating point hardware

– Environment of development

– Computers were small and unreliable

– Primary applications were scientific

– No programming methodology or tools

– Machine efficiency was most important

– Speed of object code was the key

19

Design Process of Fortran

• Impact of environment on design of Fortran I

– No need for dynamic storage

– Need good array handling and counting loops

– No string handling, decimal arithmetic, or powerful input/output
(commercial stuff)

20

Fortran I Overview

• First implemented version of Fortran I

– Names could have up to six characters

– Up to just 2 characters in Fortran 0

– Post-test counting loop (DO)

– Do N1 Variable = first_value, last_value

– Ex)

–

– 100

nfac = 1

do 100 n=2, 10, 1

nfac = nfac*n

– Formatted I/O

– User-defined subprograms

– Three-way selection statement (arithmetic IF)

– If (arithmetic expression) N1, N2, N3

– No data typing statements
– Variables whose name starts with I, J, K, L, M, N were implicitly

integer type

– All others were implicitly floating point

21

Fortran I Overview (continued)

• First implemented version of FORTRAN

– Compiler released in April 1957, after 18 worker-years of
effort

– Code was very fast

– Quickly became widely used

– No separate compilation

– Any change in a program requires that entire program be
recompiled

– Programs larger than 400 lines rarely compiled correctly

– Mainly due to poor reliability of 704

22

Fortran II

• Distributed in 1958

– Independent compilation

– Fixed the bugs in Fortan I compilation system

23

Fortran IV

• One of the most widely used programming
language of its time

• Evolved during 1960-62

– ANSI standard in 1966

– “Fortran 66”

• Improvement over Fortran II

– Explicit type declarations

– Logical If construct

– Subprogram names could be parameters

– You can pass subprorams as parameters to other subprograms

24

Fortran 77

• Became the new standard in 1978

– ANSI 1978

• Extra features

– Character string handling

– Logical loop control statement

– IF-THEN-ELSE statement

25

Fortran 90

• ANSI, 1992

• Most significant changes from Fortran 77

– Modules

– Dynamic arrays

– Pointers

– Recursion

– CASE statement

– Parameter type checking

26

Latest versions of Fortran

• Fortran 95

– relatively minor additions, plus some deletions

• Fortran 2003

– ditto

26

99 Bottles of Beer in Fortran

27

Fortran Evaluation

• Highly optimizing compilers (all versions before 90)

– Types and storage of all variables are fixed before run time

– No new variables or space can be allocated dynamically

– Sacrifice of flexibility to simplicity and efficiency

• Dramatically changed forever the way computers
are used

– First widely used high level language!

• Characterized as the lingua franca of the computing
world

28

Functional Programming: LISP

• LISt Processing language

– Designed at MIT by McCarthy

• AI research needed a language to

– Process data in lists (rather than arrays)

– Symbolic computation (rather than numeric)

• Only two data types: atoms and lists

• Syntax is based on lambda calculus

29

Representation of Two LISP Lists

Representing the lists (A B C D)

and (A (B C) D (E (F G)))

26

99 Bottles of Beer in LISP

30

LISP Evaluation

• Pioneered functional programming

– No need for variables or assignment

– Control via recursion and conditional expressions

• Still the dominant language for AI

• COMMON LISP and Scheme are contemporary
dialects of LISP

• ML, Miranda, and Haskell are related languages

31

Scheme

• Developed at MIT in mid 1970s

• Small

• Extensive use of static scoping

• Functions as first-class entities

• Simple syntax (and small size) make it ideal for
educational applications

32

COMMON LISP

• An effort to combine features of several dialects of
LISP into a single language

• Large, complex

33

The First Step Toward Sophistication: ALGOL 60

• Environment of development

– FORTRAN had (barely) arrived for IBM 70x

– Many other languages were being developed, all for
specific machines

– No portable language; all were machine-
dependent

– No universal language for communicating algorithms

• ALGOL 60 was the result of efforts to design a
universal language

34

Early Design Process

• ACM and GAMM met for four days for design (May
27 to June 1, 1958)

• Goals of the language

– Close to mathematical notation

– Good for describing algorithms

– Must be translatable to machine code

35

ALGOL 58

• Concept of type was formalized

• Names could be any length

• Arrays could have any number of subscripts

• Parameters were separated by mode (in & out)

• Subscripts were placed in brackets

• Compound statements (begin ... end)

• Semicolon as a statement separator

• Assignment operator was :=

• if had an else-if clause

• No I/O - “would make it machine dependent”

36

ALGOL 58 Implementation

• Not meant to be implemented, but variations of it
were (MAD, JOVIAL)

• Although IBM was initially enthusiastic, all support
was dropped by mid 1959

37

ALGOL 60 Overview

• Modified ALGOL 58 at 6-day meeting in Paris

• New features

– Block structure (local scope)

– Two parameter passing methods

– Subprogram recursion

– Stack-dynamic arrays

– Still no I/O and no string handling

38

ALGOL 60 Evaluation

• Successes

– It was the standard way to publish algorithms for over 20
years

– All subsequent imperative languages are based on it

– First machine-independent language

– First language whose syntax was formally defined (BNF)

39

ALGOL 60 Evaluation (continued)

• Failure

– Never widely used, especially in U.S.

– Reasons

– Lack of I/O and the character set made programs non-portable

– Too flexible--hard to implement

– Entrenchment of Fortran

– Formal syntax description

– Lack of support from IBM

40

Computerizing Business Records: COBOL

• Environment of development

– UNIVAC was beginning to use FLOW-MATIC

– USAF was beginning to use AIMACO

– IBM was developing COMTRAN

41

COBOL Historical Background

• Based on FLOW-MATIC

• FLOW-MATIC features

– Names up to 12 characters, with embedded hyphens

– English names for arithmetic operators (no arithmetic
expressions)

– Data and code were completely separate

– Verbs were first word in every statement

42

COBOL Design Process

• First Design Meeting (Pentagon) - May 1959

• Design goals

– Must look like simple English

– Must be easy to use, even if that means it will be less powerful

– Must broaden the base of computer users

– Must not be biased by current compiler problems

• Design committee members were all from computer
manufacturers and DoD branches

• Design Problems: arithmetic expressions? subscripts? Fights
among manufacturers

43

COBOL Evaluation

• Contributions

– First macro facility in a high-level language

– Hierarchical data structures (records)

– Nested selection statements

– Long names (up to 30 characters), with hyphens

– Separate data division

43

COBOL Evaluation (Continued)

• Added type declarations, record types, file

manipulation

44

COBOL: DoD Influence

• First language required by DoD

– would have failed without DoD

• Still the most widely used business applications
language

45

The Beginning of Timesharing: BASIC

• Designed by Kemeny & Kurtz at Dartmouth

• Design Goals:

– Easy to learn and use for non-science students

– Must be “pleasant and friendly”

– Fast turnaround for homework

– Free and private access

– User time is more important than computer time

• Current popular dialect: Visual BASIC

• First widely used language with time sharing

46

Everything for Everybody: PL/I

• Designed by IBM and SHARE

• Computing situation in 1964 (IBM's point of view)

– Scientific computing

– IBM 1620 and 7090 computers

– FORTRAN

– SHARE user group

– Business computing

– IBM 1401, 7080 computers

– COBOL

– GUIDE user group

47

PL/I: Background

• By 1963

– Scientific users began to need more elaborate I/O, like
COBOL had; business users began to need floating point
and arrays

– It looked like many shops would begin to need two kinds of
computers, languages, and support staff--too costly

• The obvious solution

– Build a new computer to do both kinds of applications

– Design a new language to do both kinds of applications

48

PL/I: Design Process

• Designed in five months by the 3 X 3 Committee

– Three members from IBM, three members from SHARE

• Initial concept

– An extension of Fortran IV

• Initially called NPL (New Programming Language)

• Name changed to PL/I in 1965

49

PL/I: Evaluation

• PL/I contributions

– First unit-level concurrency

– First exception handling

– Switch-selectable recursion

– First pointer data type

– First array cross sections

• Concerns

– Many new features were poorly designed

– Too large and too complex

50

Two Early Dynamic Languages: APL and SNOBOL

• Characterized by dynamic typing and dynamic
storage allocation

• Variables are untyped

– A variable acquires a type when it is assigned a value

• Storage is allocated to a variable when it is
assigned a value

51

APL: A Programming Language

• Designed as a hardware description language at
IBM by Ken Iverson around 1960

– Highly expressive (many operators, for both scalars and
arrays of various dimensions)

– Programs are very difficult to read

• Still in use; minimal changes

51APL: Powerful Operators, interactive language,

custom character set

51

99 Bottles of Beer in APL

52

SNOBOL

• Designed as a string manipulation language at Bell
Labs by Farber, Griswold, and Polensky

• Powerful operators for string pattern matching

• Slower than alternative languages (and thus no
longer used for writing editors)

• Stilled used for certain text processing tasks

53

The Beginning of Data Abstraction: SIMULA 67

• Designed primarily for system simulation in
Norway by Nygaard and Dahl

• Based on ALGOL 60 and SIMULA I

• Primary Contributions

– Co-routines - a kind of subprogram

– Implemented in a structure called a class

– Classes are the basis for data abstraction

– Classes are structures that include both local data and
functionality

54

Orthogonal Design: ALGOL 68

• From the continued development of ALGOL 60 but
not a superset of that language

• Source of several new ideas (even though the
language itself never achieved widespread use)

• Design is based on the concept of orthogonality

– A few principle concepts, few combining mechanisms

55

ALGOL 68 Evaluation

• Contributions

– User-defined data structures

– Reference types

– Dynamic arrays (called flex arrays)

• Comments

– Less usage than ALGOL 60

– Had strong influence on subsequent languages, especially
Pascal, C, and Ada

56

Early Descendants of ALGOLs

• ALGOL languages impacted all imperative languages

– Pascal

– C

– Modula/Modula 2

– Ada

– Oberon

– C++/Java

– Perl (to some extent)

57

Pascal - 1971

• Developed by Wirth (a member of the ALGOL 68
committee)

• Designed for teaching structured programming

• Small, simple, nothing really new

• Largest impact on teaching programming

– From mid-1970s until the late 1990s, it was the most
widely used language for teaching programming

58

C - 1972

• Designed for systems programming (at Bell Labs by
Dennis Richie)

• Evolved primarily from BCLP, B, but also ALGOL 68

• Powerful set of operators, but poor type checking

• Initially spread through UNIX

• Many areas of application

58

99 Bottles of Beer in C

59

Perl

• Related to ALGOL only through C

• A scripting language

– A script (file) contains instructions to be executed

– Other examples: sh, awk, tcl/tk

• Developed by Larry Wall

• Perl variables are statically typed and implicitly declared

– Three distinctive namespaces, denoted by the first character of a
variable’s name

• Powerful but somewhat dangerous

• Widely used as a general purpose language

60

Programming Based on Logic: Prolog

• Developed, by Comerauer and Roussel (University
of Aix-Marseille), with help from Kowalski (
University of Edinburgh)

• Based on formal logic

• Non-procedural

• Can be summarized as being an intelligent
database system that uses an inferencing process
to infer the truth of given queries

• Highly inefficient, small application areas

60

99 Bottles of Beer in Prolog

61

History’s Largest Design Effort: Ada

• Huge design effort, involving hundreds of people,
much money, and about eight years

– Strawman requirements (April 1975)

– Woodman requirements (August 1975)

– Tinman requirements (1976)

– Ironman equipments (1977)

– Steelman requirements (1978)

• Named Ada after Augusta Ada Byron, known as
being the first programmer

62

Ada Evaluation

• Contributions

– Packages - support for data abstraction

– Exception handling - elaborate

– Generic program units

– Concurrency - through the tasking model

• Comments

– Competitive design

– Included all that was then known about software engineering and
language design

– First compilers were very difficult; the first really usable compiler
came nearly five years after the language design was completed

63

Ada 95

• Ada 95 (began in 1988)

– Support for OOP through type derivation

– Better control mechanisms for shared data

– New concurrency features

– More flexible libraries

• Popularity suffered because the DoD no longer
requires its use but also because of popularity of
C++

64

Object-Oriented Programming: Smalltalk

• Developed at Xerox PARC, initially by Alan Kay,
later by Adele Goldberg

• First full implementation of an object-oriented
language (data abstraction, inheritance, and
dynamic type binding)

• Pioneered the graphical user interface design

• Promoted OOP

65Combining Imperative and Object-Oriented
Programming: C++

• Developed at Bell Labs by Stroustrup in 1980

• Evolved from C and SIMULA 67

• Facilities for object-oriented programming, taken partially from
SIMULA 67

• Provides exception handling

• A large and complex language, in part because it supports both
procedural and OO programming

• Rapidly grew in popularity, along with OOP

• ANSI standard approved in November 1997

• Microsoft’s version (released with .NET in 2002): Managed C++

– delegates, interfaces, no multiple inheritance

66

Related OOP Languages

• Eiffel (designed by Bertrand Meyer - 1992)

– Not directly derived from any other language

– Smaller and simpler than C++, but still has most of the
power

– Lacked popularity of C++ because many C++ enthusiasts
were already C programmers

• Delphi (Borland)

– Pascal plus features to support OOP

– More elegant and safer than C++

67
An Imperative-Based Object-Oriented Language:

Java

• Developed at Sun in the early 1990s

– C and C++ were not satisfactory for embedded electronic
devices

• Based on C++
– Significantly simplified (does not include struct, union,
enum, pointer arithmetic, and half of the assignmentcoercions
of C++)

– Supports only OOP

– Has references, but not pointers

– Includes support for applets and a form of concurrency

68

99 Bottles of Beer in Java

68

Java Evaluation

• Eliminated unsafe features of C++

• Concurrency features

• Libraries for applets, GUIs, database access

• Portable: Java Virtual Machine concept, JIT
compilers

• Widely used for WWW pages

• Use for other areas increased faster than any other
language

• Most recent version, 5.0, released in 2004

69

Scripting Languages for the Web

• JavaScript
– Began at Netscape, but later became a joint venture of Netscape

and Sun Microsystems
– Used in Web programming (client side) to create dynamic HTML

documents

– Purely interpreted

– Related to Java only through similar syntax

• PHP
– PHP: Hypertext Preprocessor

– A server-side HTML-embedded scripting language, often used for
form processing and database access through the Web

– Purely interpreted

• Python
– An OO interpreted scripting language

– Type checked but dynamically typed

– Used for CGI programming and form processing

– Dynamically typed, but type checked

– Supports lists, tuples, and hashes

70

Scripting Languages for the Web

• Ruby

– Designed in Japan by Yukihiro Matsumoto (a.k.a, “Matz”)

– Began as a replacement for Perl and Python

– A pure object-oriented scripting language

– All data are objects

– Most operators are implemented as methods, which can
be redefined by user code

– Purely interpreted

70

99 Bottles of Beer in Python

71

A C-Based Language for the New Millennium: C#

• Part of the .NET development platform

• Based on C++ , Java, and Delphi

• Provides a language for component-based software
development

• All .NET languages (C#, Visual BASIC.NET, Managed
C++, J#.NET, and Jscript.NET) use Common Type
System (CTS), which provides a common class library

• Likely to become widely used

72

Markup/Programming Hybrid Languages

• XSLT

– eXtensible Markup Language (XML): a metamarkup language

– eXtensible Stylesheet Language Transformation (XSTL)
transforms XML documents for display

– Programming constructs (e.g., looping)

• JSP

– Java Server Pages: a collection of technologies to support
dynamic Web documents

– servlet: a Java program that resides on a Web server; servlet’s
output is displayed by the browser

73

Summary

• Development, development environment, and
evaluation of a number of important programming
languages

• Perspective into current issues in language design

74

Homework #1

• Read articles introduced in this lecture

– On the design of programming languages
– http://jjcweb.jjay.cuny.edu/~jwkim/class/csci374-fall-

24/PLHistoryGoodDesign.pdf

• Problem Solving (Homework 1)

– Use problems on class homepage

– No late homework will be accepted

– How to hand in?
– By email attachment

– Use text editor (exception: pictures, etc)

– CC yourself with the proper subject line

– Ex: CSCI 374-01, hw1

http://jjcweb.jjay.cuny.edu/~jwkim/class/csci374-spring-24/PLHistoryGoodDesign.pdf

