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An important cluster of closely-related early Chomsky papers1 had two major consequences. First, they
defined a new branch of mathematics, formal language theory, which has flourished in its own right. But sec-
ond, and more importantly for our purposes, this new branch of mathematics provided the formal grounding
for a new conception of linguistics in which grammars, rather than sentences or collections of sentences, were
the scientifically central objects: instead being derived from collections of sentences as compact summaries
of observed regularities, grammars are seen as (ultimately mental) systems that determine the status of
sentences. The “observed regularities” come to be seen as consequences of the structure of the underlying
system, the grammar. The classification of grammars that became known as the Chomsky hierarchy was an
exploration of what kinds of regularities could arise from grammars that had various conditions imposed on
their structure.

Rather than laying out the mathematical theory in complete detail — numerous sources already provide this2

— my aim in this chapter will be to focus on bringing out some key intuitions that emerge from the theory and
try to highlight their applicability to theoretical linguistics. Looking at a completely formal treatment makes
it easy to overestimate the degree to which the important concepts are bound to certain idealizations, such
as the restriction to strings as the objects being generated and a binary grammaticality/ungrammaticality
distinction.3 While those idealizations are there in the theory, I hope to make the case that certain intuitions
that emerge from the theory are meaningful and useful in ways that transcend those idealizations.4 To the
extent that I succeed in making this case, the reader will be able to turn to the formal literature with some
motivating ideas in mind about the important concepts to watch out for.

One idea which plays a major role is the intersubstitutability of subexpressions. This is familiar from
the distributional approach to discovering syntactic categories that is sometimes presented in introductory
textbooks.5 We reach the conclusion that cat and dog belong to the same category, for example, by noting
that substituting one for the other does not change a sentence’s grammaticality. While we might introduce
the term “noun” or the book-keeping symbol N as a label for the class that cat and dog both belong to, there
is nothing to being a noun other than being intersubstitutable with other nouns; the two-place predicate
“belongs to the same category as” is more fundamental than the one-place predicate “is a noun”. (This

1Chomsky (1956); Chomsky and Miller (1958); Chomsky (1959, 1963); Chomsky and Miller (1963); Miller and Chomsky
(1963).

2For standard presentations from the general perspective of the theory of computation, see e.g. Hopcroft and Ullman (1979),
Lewis and Papadimitriou (1981) and Sipser (1997). For more linguistics-oriented presentations, see e.g. Levelt (1974), Partee
et al. (1990).

3For generalizations beyond the case of strings as the generated objects, see the rich literature on tree grammars (e.g.
Thatcher, 1967, 1973; Thatcher and Wright, 1968; Rounds, 1970; Rogers, 1997; Comon et al., 2007). Generalizations beyond
binary grammaticality arise via the theory of semirings (e.g. Kuich, 1997; Goodman, 1999; Mohri, 2002).

4Notice that the argument here does not concern the usefulness of the traditional notion of weak generative capacity that
emerges from the original work on the Chomsky hierarchy, or the viewpoint which equates natural languages with sets of strings
and asks where those sets of strings fall on the hierarchy (or extensions of it). The main point I hope to make here is that the
usefulness of the Chomsky hierarchy for theoretical linguistics need not be limited to what emerges from those traditional and
better-known perspectives.
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diverges from the view where a noun, for example, would be defined as a word that describes a person, place
or thing.)

Intersubstitutability is closely related to the way different levels on the Chomsky hierarchy correspond to
different kinds of memory. A grammar that will give rise to the intersubstitutability of cat and dog is one
that ignores, or forgets, all the ways that they differ, collapsing all distinctions between them. Similarly
for larger expressions: the distinctions between wash the clothes and go to a bar , such as the fact that they
differ in number of words and the fact that only one of the two contains the word the, can be ignored. The
flip side of this irrelevant information, that a grammar ignores, is the relevant information that a grammar
tracks — this remembered, relevant information is essentially the idea of a category. Different kinds of
grammars correspond to different kinds of memory in the sense that they differ in how these categories, this
remembered information, are used to guide or constrain subsequent generative steps.

Much of the discussion below aims to show that this idea of intersubstitutability gets at the core of how
any sort of grammar differs from a mere collection of sentences, and how any sort of grammar might finitely
characterize an infinite collection of expressions. A mechanism that never collapsed distinctions between
expressions would be forced to specify all combinatorial possibilities explicitly, leaving no room for any sort
of productivity; a mechanism that collapsed all distinctions would treat all expressions as intersubstitutable
and impose no restrictions on how expressions combine to form others. An “interesting” grammar is one that
sits somewhere in between these two extremes, collapsing some but not all distinctions, thereby giving rise to
constrained productivity — productivity stems from the distinctions that are ignored, while constraints stem
from those that are tracked. The task of designing a grammar to generate some desired pattern amounts to
choosing which distinctions to ignore and which distinctions to track.

1 Rewriting grammars

We begin with the general concept of a string-rewriting grammar, which provides the setting in which the
Chomsky hierarchy can be formulated.

1.1 Unrestricted rewriting grammars

An unrestricted rewriting grammar works with a specified set of nonterminal symbols, and specified set of
terminal symbols. One of the nonterminal symbols is designated as the grammar’s start symbol. The grammar
also specifies a set of rewrite rules of the form α → β where α is any non-empty string of nonterminal and
terminal symbols, and β is any (possibly empty) string of nonterminal and terminal symbols. A rewrite
rule α → β says that from any string φ that contains α, we can derive a new string which is like φ but
has α replaced with β. We say that a rewriting grammar generates a string s if s can be derived from
the grammar’s start symbol via a sequence of steps using the grammar’s rewrite rules, and s contains only
terminal symbols.

It turns out that grammars of this sort are extremely powerful — in fact, they are general purpose computing
devices, capable of carrying out any computation that a Turing machine is capable of.6 For example, the
grammar in Figure 17 emulates a machine that begins with the length-one string a, and “doubles” this string
repeatedly to produce aa, then aaaa, then aaaaaaaa, before stopping at some point with the current string as
output. I use uppercase letters for nonterminal symbols and letters in a different font for terminal symbols.
So in the grammar in Figure 1, the set of nonterminal symbols is {S,L,R,F,B,X}, and the set of terminal
symbols is {a}. The empty string is written as ε.

For any string s that we choose, the grammar in Figure 1 generates s if and only if the length of s is a
power of two and no symbol other than a occurs in s. For convenience we sometimes say, using “generate”
in a subtly different sense, that the grammar generates the set of strings that satisfy these conditions. A

5See e.g. Carnie (2013, pp.48–50), Fromkin et al. (2000, pp.147–151). Johnson (2019) gives a particularly clear presentation
of the fundamental relationship between substitution classes and phrase structure.

6See e.g. Chomsky (1963, pp.358–359), Levelt (1974, pp.106–109), Partee et al. (1990, pp.516–517), Hopcroft and Ullman
(1979, pp.221–223).

7This is based on an example from Hopcroft and Ullman (1979, pp.220–221).

2



start symbol: S

i. S → L F a R
ii. F a → a a F
iii. F R → B R
iv. a B → B a
v. L B → L F
vi. L B → L X
vii. L X → X
viii. X a → a X
ix. X R → ε

(a) An unrestricted rewriting grammar

start: S
apply rule i: L F a R

first doubling cycle
apply rule ii: L a a F R
apply rule iii: L a a B R
apply rule iv: L a B a R
apply rule iv: L B a a R
apply rule v: L F a a R


second doubling cycle

apply rule ii: L a a F a R
apply rule ii: L a a a a F R
apply rule iii: L a a a a B R
apply rule iv: L a a a B a R
apply rule iv: L a a B a a R
apply rule iv: L a B a a a R
apply rule iv: L B a a a a R
apply rule vi: L X a a a a R


cleaning up

apply rule vii: X a a a a R
apply rule viii: a X a a a R
apply rule viii: a a X a a R
apply rule viii: a a a X a R
apply rule viii: a a a a X R
apply rule ix: a a a a

(b) A derivation using this grammar

Figure 1: The nonterminal symbols L and R mark the left and right edge of the string. We begin
with one occurrence of a between these markers; the nonterminal symbols F and B serve as a device
that doubles this inner string to form aa, then aaaa, etc., arbitrarily many times. On each single
“doubling cycle” of this device, F moves forward through the string replacing each occurrence of a
with two (rule ii), and then B moves backward (rule iv) until it reaches the left edge. At the end
of any such cycle, B can be replaced (rule vi) by the “cleaning up” symbol X which deletes the left
edge marker (rule vii), then moves rightwards through the string (rule viii) to eventually delete the
right edge marker (rule ix).

set of strings is sometimes called a “stringset”.8 Thus the grammar in Figure 1 generates the stringset
{an | n is a power of two} = {a, aa, aaaa, aaaaaaaa, . . . }.

Note that there is no direct connection between the notion of generation and that of sets: a grammar
generates a set only by virtue of generating (all and only) the strings contained in it. While it is convenient
to talk of “generating a set of strings”, fundamentally it is strings that are generated, not sets — similarly,
while it is convenient to talk of “eating a pile of apples”, it is apples that are eaten, not piles.

1.2 Restrictions on grammars

There are (at least) two reasons why we might question the usefulness of unrestricted rewriting grammars
in our theories of natural language.

An obvious one perhaps is that since they can carry out any computational procedure at all, adopting this
class of grammars would not constitute a meaningful hypothesis about what is a possible human language.
This is an objection on the grounds of the generative capacity of the formalism.

The concern that is more prominent in Chomsky’s early discussions, however, involves the notion of a
structural description. This concern is not about the range of possible grammars made available by the
formalism, but about what is said by the fact that a particular grammar generates a particular string. The
idea is that if a grammar f generates a sentence x, then we would like to be able to identify “a structural

8Much of the technical literature uses the term “language” here, but this creates unnecessary distractions.
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Restriction Required form of rules

Restriction 1, “context-sensitive” φAψ → φωψ where ω is a non-empty string

Restriction 2, “context-free” A→ ω where ω is a non-empty string

Restriction 3, “finite-state” A→ x or A→ xB where x is a terminal symbol
and B is a nonterminal symbol

Table 1

description of x (with respect to the grammar f) giving certain information which will facilitate and serve
as the basis for an account of how x is used and understood by speakers of the language whose grammar is
f ; i.e., which will indicate whether x is ambiguous, to what other sentences it is structurally similar, etc.”
(Chomsky, 1959, p.138). Chomsky’s chosen way to make this notion precise was to import the existing idea
of “immediate constituent analysis” (Harris, 1946, 1954; Wells, 1947) and take trees of the now-familiar sort
to be the desired kind of structural descriptions (Chomsky, 1959, p.141).9 But there is no obvious way to
associate a derivation in an unrestricted rewriting grammar with a tree structure that provides an immediate
constituent analysis for the generated string. For example, there is no natural way to assign such a tree
structure to the string aaaa on the basis of the derivation shown in Figure 1. This is roughly because the
grammar contains rules that do not simply replace a single symbol with a string (Chomsky and Miller, 1963,
p.294).

Another computational device that had attracted much attention in the 1950s was the finite-state automaton
(FSA) (e.g. Rabin and Scott, 1959). Chomsky (1956) investigated the generative capacity of FSAs and
concluded that it was insufficient for natural language, and showed that a certain sort of phrase structure
grammar formalizing the notion of immediate constituent analysis could handle at least some cases that
FSAs could not.10

The classes of rewriting grammars investigated in Chomsky 1959 are therefore motivated by the interest in
“devices with more generative capacity than finite automata but that are more structured (and, presumably,
have less generative capacity) than arbitrary Turing machines” (Chomsky, 1963, p.360), the idea being that
“the intermediate systems are those that assign a phrase structure description to the resulting sentence”
(Chomsky, 1959, p.139). A sequence of three increasingly strict restrictions on rewriting grammars (Chom-
sky, 1959, p.142) produces a hierarchy of classes of grammars, the broadest of which corresponds to Turing
machines and the narrowest of which corresponds to finite-state automata.

These three restrictions are shown in Table 1. In this table, A stands for any nonterminal symbol, and φ and
ψ stand for any (possibly empty) strings of terminal and nonterminal symbols. Notice that each of these
restrictions requires that a rule replaces a single symbol with some non-empty string, in order to allow the
possibility of constructing a tree expressing immediate-constituent structure from any derivation.11

To be precise, these are restrictions on the form that individual rules can take, and a grammar is of a
certain type if and only if all of its rules satisfy the corresponding restriction. But notice that rules that
satisfy Restriction 2 necessarily also satisfy Restriction 1 (by choosing φ and ψ to be the empty string), and
similarly rules that satisfy Restriction 3 also satisfy both of the others. So these restrictions on the form of
rules give us four classes of grammars:

(1) a. The Type 0 grammars are simply all unrestricted rewriting grammars.

b. The Type 1 grammars are those satisfying Restriction 1.

c. The Type 2 grammars are those satisfying Restriction 2 (and therefore also Restriction 1).

9See also Chomsky 1956, §3.1, Chomsky and Miller 1963, pp.288–289.
10The phrase structure grammars considered in section 3 of Chomsky (1956) do not correspond exactly to any of the classes

in (1) that are discussed in Chomsky (1959).
11Citing Harris 1951, Chomsky (2006, p.172, fn.15) writes that “The concept of ‘phrase structure grammar’ was explicitly

designed to express the richest system that could reasonably be expected to result from the application of Harris-type procedures
to a corpus”.
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start symbol: A
A → someone B
B → really B
B → ran C
B → ran
C → and A
C → and B
C → really D
D → really D
D → quickly C
D → quickly

(a) Rewrite-rule representation

A B C D

someone ran

really

really

really

quickly

and

and

(b) Graphical representation

Figure 2: A simple finite-state grammar, represented graphically and as rewrite rules

d. The Type 3 grammars are those satisfying Restriction 3 (and therefore also Restrictions 1 and 2).

The grammar in Figure 1 is a Type 0 grammar and does not belong to any of the more restricted classes,
since rules such as ‘a B → B a’ do not satisfy Restriction 1. It turns out, however, that there is a Type 1
grammar that generates this same powers-of-two stringset.12 This raises the question of how these classes
of grammars relate to generability of stringsets: are there stringsets that can be generated by a Type 0
grammar but not by any Type 1 grammar? Or is the extra rule-writing freedom that comes with Type 0
grammars actually inconsequential from the perspective of generable stringsets?

It turns out that all four classes of grammars are distinct in their generative capacity: at each boundary,
there are stringsets that can be generated by a Type n grammar that cannot be generated by any Type (n+1)
grammar. So there are, for example, Type 0 grammars that generate stringsets that no Type 1 grammar
can generate — even if the Type 0 grammar in Figure 1 is not one of them.

2 Type 3 grammars: finite state grammars

As mentioned above, Type 3 grammars were understood from the outset to be a reformulation of finite-state
automata in the setting of rewriting grammars, so I will generally describe them as “finite-state grammars”
(FSGs).

Figure 2 shows an example of a FSG in rewrite-rule format, and also the equivalent finite-state automaton
in a standard graphical representation. A finite-state automaton works with a specified finite set of states
(indicated with circles in the diagram) and a specified set of (terminal) symbols. One of the states is the
designated start state (indicated with an unlabeled arrow), and some of the states are designated accepting
states (indicated with a double circle). The workings of the automaton are specified as a set of transitions,
each associating an ordered pair of states with a symbol, and represented graphically by an arrow.

A finite-state automaton generates a string s if and only if there is a connected sequence of transitions leading
from the start state to an accepting state, that emit the symbols of s in order. For example, the automaton
in Figure 2 generates someone really ran, but not someone ran really or someone ran quickly .

To see the connection between Type 3 rewriting grammars and finite-state automata, we associate states
with nonterminal symbols, and in particular associate the start state of an automaton with the starting
nonterminal of a grammar. The grammar’s rewrite rules correspond to the automaton’s transitions. Consider

12Hopcroft and Ullman (1979, p.224) show that this stringset can be generated by a grammar consisting of rules α→ β where
β is at least as long as α. The stringsets generable by grammars satisfying this “non-contracting” requirement are the same
as those generable by Type 1 grammars (Chomsky, 1959, pp.144–145). The non-contracting requirement is sometimes given
as an alternative condition defining Type 1 grammars, e.g. Levelt (1974, pp.27–29). Chomsky (1963, pp.360–363), departing
from the Chomsky 1959 numbering system that has now become standard, defines Type 1 grammars with the non-contracting
requirement, and calls grammars with rules satisfying the φAψ → φωψ format “Type 2 grammars”.
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A
someone B
someone ran C
someone ran and B
someone ran and ran C
someone ran and ran really D
someone ran and ran really quickly

(a) Rewriting derivation

A

B

C

B

C

D

quickly

really

ran

and

ran

someone

(b) Tree diagram

Figure 3: Two equivalent representations of how the grammar in Figure 2 generates the string
someone ran and ran really quickly

for example the transition from state A to state B emitting someone. If we think of each nonterminal X as
characterizing all strings that can be used to move the automaton from state X to an accepting state, then
the rewrite rule ‘A → someone B’ says that a string can move the automaton from state A to an accepting
state if it’s made up of the symbol someone followed by a string that moves from state B to an accepting
state. For transitions into an accepting state we include an additional rule with no nonterminal on the right
hand side, such as ‘B → ran’.

The string-rewriting derivation and the tree structure in Figure 3 both show that someone ran and ran really
quickly is generated by both the rewriting grammar and the automaton in Figure 2.

The central idea in understanding the capabilities and limitations of FSGs is what I will call a string’s
forward set. Adopting the automaton perspective, the forward set of a string s is the set of states that the
automaton could reach from its initial state by taking some sequence of transitions that produce s. For
example, if the automaton in Figure 2 has, from its initial state, taken some sequence of transitions that
produces someone ran, then the only state that it might be in is C; so the forward set of someone ran (for
this automaton) is {C}. Similarly, the forward set of someone really is {B}, the forward set of someone ran
and is {A,B}, and the forward set of someone and is the empty set. The automaton generates a string if
and only if the forward set of the string contains an accepting state.

Importantly, knowing the forward set of some initial part of a string (i.e. a prefix of the string, in formal
terms) provides a head-start towards calculating the forward set of the entire string. For example, suppose
we are told that the forward set (using the grammar in Figure 2) of some particular string s is {C}. Then,
writing ++ for string concatenation, it is straightforward to see that the forward set of the string s++ really is
{D}, and that the forward set of s++ and is {A,B}. We can be sure of this without knowing anything about
s except its forward set. The forward set captures everything there is to know about how the automaton
treats the prefix s; it identifies what we can think of as the category of that subexpression.

This leads us to the crucial idea of intersubstitutability mentioned in the introduction. Notice that someone
ran and someone really ran both have the same forward set, namely {C}. So for any string t, the forward
set of someone ran ++ t must be the same as the forward set of someone really ran ++ t — because in each
case, all that matters is how the string t can “move us forward” from whatever states happen to be in the
common forward set of someone ran and someone really ran. Furthermore, the two strings someone ran ++ t
and someone really ran ++ t are either both generated by the grammar, or neither is, since these two strings’
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Forward set Example strings from the corresponding equivalence class

{A} ε

{B} someone
someone really
someone really really
someone ran and someone
someone really ran and someone

{C} someone ran
someone really ran
someone ran and ran
someone ran and someone ran

{D} someone ran really
someone ran really really
someone ran and someone ran really

{A,B} someone ran and
someone really ran and
someone ran and someone ran and

∅ someone and
someone someone
and ran

Table 2: Equivalence classes induced by the grammar in Figure 2

common forward set either does or doesn’t contain an accepting state.

Stated generally, what we can conclude when two strings have the same forward set is that the relevant
grammar treats them as intersubstitutable prefixes. So forward sets describe the way a grammar partitions
prefixes into equivalence classes, collections of prefixes that are all intersubstitutable with each other. Table 2
shows the classes into which prefixes are partitioned by the grammar in Figure 2.

These intersubstitutability relationships also underlie the way “loops” in the structure of an FSG allow
for the generation of infinitely many strings. A consequence of the loops in Figure 2 is that, for example,
someone really and someone really really have the same forward set (namely {B}). Since these are therefore
intersubstitutable, it follows that they are also both interchangeable with someone really really really —
since we can substitute someone really really for the someone really part of itself. Any continuation that is
compatible with one of these strings (e.g. the continuation ran) will be compatible with all others from the
infinite class as well.

Figure 4 and Figure 5 show some more abstract examples to sharpen these important points.

The grammar in Figure 4 requires that a occurs an odd number of times. Here, “what matters” about a
prefix is just whether a occurs an odd or even number of times. The grammar reflects this by grouping all
strings with an even number of as together in the equivalence class represented by the forward set {E}; and
similarly, for an odd number, the forward set {O}. See Table 3.

The grammar in Figure 5 requires that a be the second last symbol in a string. Part of what matters here is
whether a was the second last symbol; we also need to track whether the last symbol was a, so that we know
where we stand if one more symbol is added. These two yes-no questions create a four-way split, represented
by the four forward sets shown in Table 4. The set of all possible strings is partitioned into these four classes,
and knowing which of these four classes a string belongs to provides everything an automaton needs to know
in order to enforce appropriate requirements on what follows. For example, any two strings with a in the
last position but not the second last position will both have forward set {P,Q}, and will therefore be treated
as intersubstitutable.
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start symbol: E
E → a O
E → a
O → a E
E → b E
O → b O
O → b

(a) Rewrite-rule representation

E O

a

a

b b

(b) Graphical representation

Figure 4: Two representations of a finite-state grammar requiring an odd number of as

Contains an even number of as
forward set: {E}
example strings: ε, b, bb, aa, baa, aba, aab, abba

Contains an odd number of as
forward set: {O}
example strings: a, ab, ba, bab, bba, aaa, aaba, baaa

Table 3: Equivalence classes induced by the grammar in Figure 4

These examples bring out an important intuition that is likely familiar to linguists: designing a grammar
amounts to choosing “what to remember” about intermediate subexpressions, and what can be ignored. It
is exactly this move of ignoring distinctions between subexpressions that allows a finitely-specified grammar
to generate unboundedly many expressions. A device that never allowed itself to “forget”, or ignore, some
aspects of an expression’s internals, would be one where the applicability of a grammatical rule is dependent
on the entire surrounding context, and would simply amount to a finite list of expressions. The automaton
in Figure 6 is of this uninteresting sort: each state serves to remember an entire prefix, so no two distinct
prefixes are “grouped together” by virtue of sharing a forward set, and the automaton simply encodes an
arbitrary finite set of strings (namely {b, ab, aaa, aab, aba, bba, bbb}). This set exhibits no interesting patterns
because the automaton has no interesting structure.

Given the central role of this partitioning of strings into classes, a natural question that arises is what sorts
of partitionings are possible. How large can the number of classes induced by a finite-state grammar get?
There is no upper limit, but the number of classes must be finite.13 This follows from the fact that the
number of states is finite: each equivalence class is identified by a subset of the set of states, and if the set
of states is finite then it has only finitely many subsets.

The requirement that there only be finitely many equivalence classes allows us to succinctly identify the
limitations of FSGs. Consider for example trying to construct an FSG for a

n
b
n

(for n ≥ 1). First note that
the prefix a is not intersubstitutable with aa, since one but not the other will lead to a well-formed string
when followed by bb. Similarly, neither of these prefixes is intersubstitutable with aaa. So the three strings

13This is the Myhill-Nerode Theorem (e.g. Hopcroft and Ullman, 1979, p.65).

P Q R
a

a

b

a

b

(a) Graphical representation

start symbol: P
P → a P
P → b P
P → a Q
Q → a
Q → b

(b) Rewrite-rule representation

Figure 5: Two representations of a finite-state grammar requiring that the second-last symbol is a
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Second-last symbol is not a Second-last symbol is a

Last symbol is not a
forward set: {P} forward set: {P,R}
example strings: ε, b, bb, abb example strings: ab, aab, bab

Last symbol is a
forward set: {P,Q} forward set: {P,Q,R}
example strings: a, ab, aba, bba example strings: aa, aaa, baa

Table 4: Equivalence classes induced by the grammar in Figure 5

a

b

a

b

b

a

b

a

a

b

Figure 6: A boring finite state automaton where states stand in a one-to-one correspondence with
prefixes

a, aa and aaa need to be split up into three distinct equivalence classes. In fact, as we go further down the
list to aaaa, aaaaa, aaaaaa and so on, we will never find two such strings of as that are intersubstitutable.
No finite number of equivalence classes will be enough to track all the relevant distinctions. But for any
finite number of states, there are only finitely many different possible forward sets; any FSG will, eventually,

assign two different strings of as — say, a
73

and a
94

— the same forward set, and will therefore incorrectly

treat them as intersubstitutable prefixes (e.g. incorrectly generating a
73
b
94

and a
94
b
73

in addition to a
73
b
73

and a
94
b
94

).

There is something natural about this idea: a grammar (or a mind) can only contain finitely many rules,
and each rule specifies some allowable “use” for finitely many classes of expression, picked out by states or
nonterminal symbols. Even if we somehow sliced up the space of all possible expressions into infinitely many
equivalence classes, any finite grammar would not contain enough rules to define uses for all of those classes.

3 Type 2 grammars: context-free grammars

A Type 2 or context-free grammar (CFG) allows the right-hand side of a rule to be any mixture of nonterminal
and terminal symbols. A classic example, which generates the a

n
b
n

(for n ≥ 1) stringset, is shown in (2). A
derivation using this grammar is in (3).

(2) start symbol: S
S → aSb
S → ab
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(3) S
aSb
aaSbb
aaaSbbb
aaaaSbbbb
aaaaabbbbb

It is helpful to consider exactly how this CFG manages to do what no FSG can. What made this pattern
impossible for an FSG is that the endless collection of prefixes a, aa, aaa, etc. cannot all be “kept separate”
by a function that maps each prefix to a subset of a finite number of states. But a CFG still has only a finite
number of rules, which specify the behaviour of a finite number of nonterminal symbols; one way or another,
a CFG must boil down to a collection of rules that specify finitely many ways in which subexpressions of
finitely many different classes can be combined. How can this finiteness be reconciled with the fact that a
CFG can generate the a

n
b
n

pattern?

The answer is that while a FSG is limited to classifying strings according to their role as prefixes (i.e. according
to what can come after them), a CFG is able to classify strings according to their role as infixes (i.e. according
to what can come around them). The CFG in (2) does not work by specifying what can come after aa, and
what can come after aaa, etc.; as we have seen, any finite device that adopts this strategy is doomed. Instead,
this grammar works by specifying what can appear around certain strings, and the crucial point is that what
can appear around, say, aabb, is the same as what can appear around aaabbb — so while the pattern a

n
b
n

does not create any interesting equivalences between prefixes, it does create interesting equivalences between
infixes. The grammar in (2) takes advantage of this by making a two-way distinction between (i) strings of

the form a
i
b
i
, which can be combined with any surroundings of the form a

j
b
j
, and (ii) all other strings.

It uses the nonterminal symbol S as a book-keeping symbol to identify strings belonging to the first class,
just as FSGs use states.

To see these concepts in a more familiar form, consider the CFG in (4). A few example derivations are illus-
trated with tree diagrams in (5). The stringset that this grammar generates also cannot be generated by any
FSG: among strings of the form dogs

∗
chase

∗
sleep, only those where there is exactly one occurrence of chase

for each occurrence of dogs after the first one will be generated (i.e. those of the form dogs dogs
n
chase

n
sleep),

so there are unboundedly many non-equivalent prefixes of the form dogs
i
. The early rejection of FSGs as

models of natural language was based on the claim that a grammar of English would need to generate
patterns of essentially this sort (Chomsky, 1956, §2.3).

(4) start symbol: S
S → NP VP N → dogs
NP → N A → chased
NP → A N A → big
NP → N RC V → chased
RC → NP V V → chase
VP → V NP VP → sleep
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(5) S

VP

sleep

NP

RC

V

chase

NP

N

dogs

N

dogs

S

VP

NP

N

dogs

V

chase

NP

N

dogs

A

chased

S

VP

NP

N

dogs

V

chased

NP

N

dogs

Subsets of the set {S,NP,VP,RC,N,A,V} of nonterminals characterize classes of strings, grouped according
to the ways they can appear as infixes. I will call these sets inside sets: for example, the inside set of the
string chase big dogs is {VP}, and the inside set of chased dogs is {VP,NP}; see Table 5. This partitioning
of strings is the CFG’s analog of an FSG’s partitioning of strings by forward sets, and corresponds to the
familiar notion of categorized constituents. A typical motivation for writing a grammar where a single
nonterminal can derive, say, both sleep and chase dogs, is to express the idea that they are intersubstitutable
infixes, i.e. for any two strings u and v, if u++sleep++v is generated then u++chase dogs++v is also generated.
This is the sense in which CFGs carry over earlier ideas from immediate constituent analysis (e.g. Harris,
1946, 1954; Wells, 1947). For more recent discussions of this important notion see Clark (2013), Clark and
Yoshinaka (2016) and Stabler (2019, §2).

Like forward sets, the inside set of a string (relative to a particular CFG) can be computed recursively from
the inside sets of the string’s parts. Recall that the forward set of a string x1x2x3x4, for example, can be
computed by considering the states in the forward set of x1x2x3, and asking which of these states have an
outgoing transition emitting x4. The situation for inside sets is similar. Considering only rules of the form
‘A → B C’ for ease of exposition: to compute the inside set of x1x2x3x4, we must consider the inside set
of x1x2 and ask whether any of its member nonterminals can be combined with any nonterminal in the
inside set of x3x4; but also consider combinations drawing one nonterminal from the inside set of x1 and
one from that of x2x3x4, plus combinations drawing one from the inside set of x1x2x3 and one from that of
x4. (The inside set of a length-one string x, we can assume, is just the set of nonterminals A for which the
grammar contains the rule A→ x.)14 The upshot is that to work out the inside set of x1x2x3x4, it suffices
to know the inside sets of all its substrings. This is more complex than the situation for forward sets because
there are multiple “splits” to consider (as opposed to only splitting into x1x2x3 and x4); but analogous in
the important sense that inside sets tell us everything there is to know about how the grammar treats the
relevant subexpression.

This freedom to split strings into pieces in arbitrary ways underlies a CFG’s ability to create classes of
intersubstitutable infixes. For example, consider the first tree in (5): the fact that we can split the last word
off dogs dogs chase sleep but then split the first word off dogs dogs chase leads to the end result that the
overall string is split into an infix dogs chase and its surroundings dogs sleep. The nonterminal symbol
RC serves as a hinge or pivot which links together these two pieces — dogs chase, which can appear “inside”
RC, and dogs sleep, which can appear “outside” it — just as the state B in Figure 2, for example, links
together someone ran and and ran really quickly .

In an important sense, what distinguishes CFGs from FSGs is not directly an issue of hierarchical tree
structure or constituency — the tree in Figure 3 is hierarchical, expressing part-whole relationships among
constituents, in at least one sense — but rather the distinction between being able to make infix-circumfix
splits and being restricted to prefix-suffix splits. Specifically, the stringsets that can be generated by a CFG

14This logic is the basis of the CKY algorithm, due to Cocke and Schwartz (1970), Kasami (1965) and Younger (1967); see
also Hopcroft and Ullman (1979, pp.139–141).
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Inside set Example strings from the corresponding equivalence class

{S} dogs sleep
dogs dogs chase sleep
chased dogs chase dogs
dogs chased dogs

{NP} dogs
big dogs
dogs dogs chase
dogs dogs dogs chase chase

{VP} sleep
chase dogs
chased dogs dogs chase
chased big dogs

{RC} dogs chase
dogs chased
big dogs chased

{N} dogs

{A} big

{V} chase

{A,V} chased

{NP,VP} chased dogs

∅ dogs dogs
sleep chased
big dogs chased

Table 5: Equivalence classes induced by the grammar in (4)

but not by any FSG are those for which every CFG is “self-embedding” (Chomsky, 1959, p.167), i.e. those
where some string can be substituted for a proper infix of itself, such as the way aabb can be substituted for

ab in the a
n
b
n

stringset. The relevant equivalence classes are still classes of strings, and are based on the
way substrings fit into larger strings.

What sorts of stringsets cannot be generated by the infix-based mechanisms of a CFG? The comparison
between the stringsets Lpal and Lrepeat defined in (6) is instructive (Chomsky and Miller, 1963, pp.285–287).
Some notation: wR is the reverse of a string w, and {a, b}+ is the set of all non-empty strings using the
symbols a and b. So Lpal is the set of even-length palindromes, and Lrepeat is the set of strings whose second
half simply repeats the first half.

(6) Lpal = {wwR | w ∈ {a, b}+} = {aa, bb, aaaa, abba, baab, bbbb, aaaaaa, aabbaa, . . . }
Lrepeat = {ww | w ∈ {a, b}+} = {aa, bb, aaaa, abab, baba, bbbb, aaaaaa, aabaab, . . . }

There is a CFG that generates Lpal, shown in (7).

(7) S → aSa
S → bSb
S → aa
S → bb

It may seem at first surprising then that no CFG can generate Lrepeat, since it is simply Lpal without the
reversal. But the wwR notation obscures the way that the CFG in (7) actually works. Importantly, this
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CFG generates abaaba not by combining the prefix aba with the suffix aba, but rather by combining the
infix baab with the surroundings a a, using the first rule shown in (7). An infix-based analysis of Lrepeat,
however, is no help.

4 Beyond context-free grammars

From the very outset there were doubts about about whether CFGs could form the basis of a theory of
natural language syntax. Chomsky (1956, §4) argued that even if the generative capacity of CFGs (unlike
FSGs) turned out to be sufficient for English (a question he left open), the resulting grammars would be
unreasonably complex.15 Relatedly, one motivation for considering Type 1 rules in the first place was the
recognition that, in practice, linguists found uses for contextual restrictions on rewrite rules, for example
to state selectional restrictions (Chomsky, 1959, p.148; Chomsky and Miller, 1963, p.295; Chomsky, 1963,
p.363).

Furthermore, it has more recently been discovered that CFGs might be insufficient, even on the straightfor-
ward basis of generative capacity, to describe some natural languages. The best-known case is a construction
in Swiss-German (Shieber, 1985) that exhibits crossing dependencies of the sort exhibited by Lrepeat in (6);
these contrast with the nested dependencies exhibited by Lpal, which are neatly handled by CFGs. See
e.g. Pullum (1986), Partee et al. (1990, pp.503–505), Frank (2004), Kallmeyer (2010, pp.17–20) and Jäger
and Rogers (2012) for useful discussion; ideas closely related to the crucial point about Swiss-German can
be traced back to Huybregts (1976, 1984) and Bresnan et al. (1982).

But despite these reasons for looking beyond CFGs, Type 1 or context-sensitive grammars (CSGs) have not
proven to be a particularly useful tool for linguistics; they have turned out to be “too close” to unrestricted
rewriting grammars. While CSGs can generate the crossing-dependency patterns of Lrepeat and Swiss-
German, their generative capacity extends far beyond this. For example, there is even a CSG that generates
{an | n is prime number}.16 The sense that this stringset seems not at all “language-like” plausibly stems
from the property of CSGs that caused Chomsky the most concern initially: contextually-restricted rewrites
produced structural descriptions that could not be interpreted along the lines of immediate constituent
analysis. Immediately after showing that CSGs could generate stringsets that no CFG could generate,
Chomsky (1959, p.148) surmised that “the extra power of grammars that do not meet Restriction 2 appears
. . . to be a defect of such grammars, with regard to the intended interpretation”. The underlying issue here is
the absence of any meaningful kind of intersubstitutability at the core of CSGs: what distinguishes a Type 1
grammar from FSGs and CFGs is exactly the fact that the substrings derivable from a symbol A in the
context φ ψ might not be derivable from A in another context.

Chomsky’s discussion of the undesirable properties of CSGs focuses on their ability to, in effect, reorder
constituents. For example, a permuting rule ‘CD → DC’, which does not itself satisfy Restriction 1 (recall
that the Type 0 grammar in Figure 1 contains rules like this), can be mimicked by a sequence of Type 1 rules
‘CD→ XD→ XC→ DC’ (Chomsky 1959, p.148; Chomsky 1963, p.365). Chomsky considers using this kind
of reordering to derive a question form such as will John come in a way that relates it to its corresponding
declarative John will come. The CSG in (8) shows how this would work. The first group of rules shown in
(8) generates the declaratives John will come and John comes as shown in (9); these are all context-free rules,
and notice that they correctly capture the intersubstitutability of will come with comes, via the nonterminal
Pred. The second group of rules in (8) serves to turn ‘NP Aux’ into ‘Aux NP’; in particular, the derivation in
(10) uses them to derive ‘Aux NP come’, and then eventually will John come, from the (canonically ordered,
intuitively) ‘NP Aux come’.

15“I do not know whether English is actually a terminal language or whether there are other actual languages that are literally
beyond the bounds of phrase structure description. Hence I see no way to disqualify this theory of linguistic structure on the
basis of [generative capacity]. When we turn to the question of the complexity of description . . . , however, we find that there
are ample grounds for the conclusion that this theory of linguistic structure is fundamentally inadequate.” (Chomsky, 1956,
§4). See also Chomsky and Miller (1963, p.297).

16This follows from the relationship between CSGs and linear bounded automata; see e.g. Hopcroft and Ullman (1979, p.225).
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(8) S → NP Pred
NP → John
Pred → Aux V
Pred → comes
Aux → will
V → come

NP Aux → X Aux
X Aux → X NP
X NP → Aux NP

(9)
S

Pred

V

come

Aux

will

NP

John

S

Pred

comes

NP

John

(10) S
NP Pred
NP Aux V
NP Aux come
X Aux come
X NP come
Aux NP come
Aux John come
will John come

S

Pred

V

come

Aux

NP

John

NP

X

Aux

will

The fact that each step of the derivation in (10) rewrites only a single nonterminal symbol ensures that
we can construct a tree structure that indicates which parts of the eventual string were derived from which
nonterminal symbols.17 (This would not be possible for a derivation that implemented the reordering directly
with the rule ‘NP Aux → Aux NP’; recall Figure 1.) But the resulting tree structure says “that will in this
sentence is a noun phrase . . . and that John is a modal auxiliary, contrary to our intention” (Chomsky,
1963, p.365). This result is undesirable because we do not want will to be in general intersubstitutable
with John, or the other strings that we would expect to be derivable from the nonterminal symbol NP if
this tiny grammar were expanded. So the labeled constituency relationships that can be read off the trees
associated with Type 1 derivations are not interpretable as statements about intersubstitutability, as they
are in more restricted grammars. In other words, Restriction 1’s requirement that each derivational step
rewrites only a single nonterminal symbol turned out to be insufficient to capture the important linguistic
intuitions regarding categorization and intersubstitutability that underlie immediate constituent analysis.

In the light of more recent developments, the difficulties raised by the issue of reordering can be seen as
stemming from the tight connection between intersubstitutability (in the sense that can be captured in
rewriting systems of the sort Chomsky was exploring) and linear contiguity. Only linearly contiguous strings
of symbols have the chance to be placed in an equivalence class. While familiar, there is nothing necessary
about this connection: a sub-part of a string might belong to a class of intersubstitutable subexpressions
without being contiguous. In this case, the relevant sub-parts will not themselves be strings, but will be
tuples of strings. To illustrate it suffices to consider tuples of size two, i.e. pairs of strings that are co-

17I am leaving aside here the issues raised by rules like XZ → XYZ, which, because they satisfy Restriction 1 “in two ways”,
do not let us uniquely identify a tree structure for each derivation; and therefore do not even let us say which strings are derived
from which nonterminal symbols in any sense. This can be overcome by simply requiring that such rules be reformulated as
either ‘X → XY / Z’ or ‘Z → YZ / X ’. For other discussions of the relationship between Type 1 grammars and tree
structures, see Partee et al. (1990, pp.448–450) and Levelt (1974, pp.29–31).
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dependent, and together constitute an expression belonging to a meaningful grammatical category, but need
not be pronounced together. For example:

(11) a. The pair (will , come) and the pair (must, leave) are intersubstitutable, in the sense that we can
replace the former with the latter in will the students come to produce must the students leave.
(As well as in John will come to produce John must leave.)

b. The pair (John, to be tall) and the pair (the girl , to win) are intersubstitutable, in the sense that
we can replace the former with the latter in John is likely to be tall to produce the girl is likely to
win.18

c. The pair (buy , which book) and the pair (eat, what) are intersubstitutable, in the sense that we
can replace the former with the latter in which book did you buy yesterday to produce what did
you eat yesterday .

Chomsky’s chosen approach to these phenomena, the notion of a grammatical transformation — extensively
elaborated elsewhere (e.g. Chomsky, 1957, 1965) but formally somewhat removed from the work described
here — was one way to resolve the tension created by the conflation of intersubstitutability and contiguity.19

In the transformational approach, the patterns described in (11) are handled by first deriving a structure in
which the co-dependent elements (e.g. will and come, or John and to be tall) are linearly contiguous, in a
base component which functions essentially like a CFG and therefore ties contiguity and intersubstitutability
together. This correctly prevents generating an expression that contains will without an accompanying verb
like come (see (9)), or contains which book without a verb to select it, or contains the predicate be tall
without a subject — but at the cost of grouping these co-dependent elements together in ways that do not
align with their relative linear positions. The transformational component resolves the tension created by
tying co-occurrence to contiguity, transforming a structure which has such co-dependent elements adjacent
into one where they are separated.

But another logically possibility, when we are confronted with the patterns in (11), is to simply break the
link between co-dependence and linear contiguity right from the beginning. Multiple context-free grammars
(MCFGs) (Seki et al., 1991) provide a canonical instantiation of this option; see e.g. Kallmeyer (2010, ch.6)
and Clark (2014) for overviews. Derivations in these grammars are most naturally understood in terms of a
“bottom-up” composition process, unlike the “top-down” rewriting grammars that serve as the framework
for the Chomsky hierarchy. MCFGs have proven to be a useful reference point for understanding and
comparing various mildly context-sensitive grammar formalisms (Joshi, 1985; Joshi et al., 1990) which sit
between CFGs and CSGs on the scale of generative capacity, including formalisms expressed in terms of
transformation-like tree-manipulating operations, such as Minimalist Grammars (Stabler, 1997, 2011) and
Tree-Adjoining Grammars (Joshi et al., 1975; Abeillé and Rambow, 2000; Frank, 2002).

5 Conclusion

The notion of intersubstitutability of subexpressions, or categorization of subexpressions into equivalence
classes, is tightly related to the very idea of a grammar itself. Grammar formalisms differ in the ways that
they compose these subexpressions (e.g. prefix-suffix combinations, infix-circumfix combinations), but this
composition is mediated by categorization. Any interesting system of categorization involves isolating out
the properties of a subexpression that affect its combinatory potential, and those that don’t; those properties
that need to be remembered or tracked, and those that can be safely ignored or forgotten. If everything
is remembered and nothing is forgotten, a grammar reduces to a list of stored complete expressions (recall
Figure 6); at the other extreme, a grammar that remembers nothing treats all subexpressions interchangeably,
and therefore generates a set of expressions that exhibits no regularities. An interesting grammar is one that
sits in between these two extremes, yielding constrained productivity.

18This is closely analogous to the point made by the wrap operation introduced by Bach (1979), modulo the distinction
between raising and control.

19Chomsky (1956, §4.1) briefly mentions that the move from CFGs to transformational grammars introduces the possi-
bility of “selecting as elements certain discontinuous strings”, for example (has,-en) and (be,-ing). But this perspective on
transformational grammars seems to have not been discussed much otherwise.
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The overall perspective that I have offered here is somewhat more optimistic about lasting contributions
of the Chomsky hierarchy than linguists have generally been since the 1960s — not more optimistic about
the role string-generating grammars can play in linguistic theory, but more optimistic about the role that
insights gleaned from the careful study of string-generating grammars can play in an understanding of any
kind of grammar.
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Computational Linguistics: First International Conference, LACL ’96 (Selected Papers), volume 1328 of
Lectures Notes in Computer Science/Lectures Notes in Artificial Intelligence, pages 366–385. Springer.

Rounds, W. C. (1970). Mappings and grammars on trees. Mathematical systems theory, 4(3):257–287.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. Theoretical
Computer Science, 88:191–229.

Shieber, S. M. (1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy,
8:333–343.

Sipser, M. (1997). Introduction to the Theory of Computation. PWS Publishing Company, Boston, MA.

Stabler, E. P. (1997). Derivational minimalism. In Retoré, C., editor, Logical Aspects of Computational
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