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Abstract—The concept of dynamic spectrum access (DSA)
enables the licensed spectrum to be traded in an open market
where the unlicensed users can freely buy and use the available
licensed spectrum bands. However, like in the other traditional
commodity markets, spectrum trading is inevitably accompanied
by various competitions and challenges. In this paper, we study
an important business competition activity – price war in the
DSA market. A non-cooperative pricing game is formulated to
model the contention among multiple wireless spectrum providers
for higher market share and revenues. We calculate the Pareto
optimal pricing strategies for all providers and analyze the
motivations behind the price war. The potential responses to the
price war are in-depth discussed. Numerical results demonstrate
the efficiency of the Pareto optimal strategy for the game and
the impact of the price war to all participants.

I. INTRODUCTION

The recently proposed dynamic spectrum access (DSA)
paradigm allows unlicensed users to opportunistically use the
unoccupied spectrum bands on a non-interfering basis [1].
This creates a new open market for trading spectrum by the
spectrum owners, providers and end users. In this market, the
wireless spectrum providers (WSPs) buy spectrum bands from
the spectrum owners (e.g., Federal Communication Commis-
sion (FCC) in United States) and sell the spectrum service to
the end users. Unlike traditional wireless users who subscribe
to a single WSP for a contractual period of time (e.g., 1 or
2 years in the existing markets), the users in DSA networks
are spectrum agile, enabled with the newly proposed cognitive
radio technology and have the freedom to dynamically choose
the WSPs based on their own preferences [1].

Several researchers are investigating the pricing problems
in DSA markets (see [2]–[4] and the references therein).
However, most of these works concentrate on how to formulate
an optimal pricing strategy to maximize the revenue from the
perspective of every individual provider without taking the
potential fighting for market share into consideration. In the
real business world, companies often adopt several tactics to
capture more market share and beat the competitors, e.g., price
war and business information warfare. As an example, the
two largest U.S. wireless carriers, AT&T and Verizon, recently
have escalated a price war to absorb more customers [5]. This
kind of competition is inevitable in an open DSA market and
cannot be overlooked. Currently, there is little understanding

on how such a dynamic price war will operate so as to make
open DSA markets feasible under economic terms.

In this paper, we study the price war in the DSA market
among multiple WSPs. Assuming that all providers are in-
dependent and profit-seeking, we define a demand function
for each individual WSP and formulate a non-cooperative
pricing game among them using the profit as payoff. The
optimal initial prices for all WSPs are analytically derived
and proven to be Pareto optimal. We investigate the price war
from two perspectives. In the short-term price war, providers
lower their prices to capture more market share and hence
increase the profit in the short period. We study the impact
of such price war for all participants. In the long-term price
war, one or several big providers cut the prices significantly
in order to monopolize the entire market in the long run. We
propose a cooperative responding strategy for small WSPs to
fight against such long-term price war and discuss how to
set regulations to avoid collusion among multiple big WSPs.
Numerical results demonstrate the efficiency of the Pareto
optimal price strategies, the progress of the short-term price
war and the effectiveness of the cooperative response to the
long-term price war.

The rest of this paper is organized as follows. The system
model is discussed in Section II. In Section III, we formulate
a non-cooperative pricing game and derive the Pareto optimal
pricing strategies for WSPs. In Section IV, we analyze the
price wars in the DSA market. Section V presents the numer-
ical results and the conclusions are drawn in the last Section.

II. SYSTEM MODEL

We consider one spectrum resource owner and n competi-
tive wireless spectrum providers (WSPs) S1, S2, · · · , Sn in the
DSA market. Fig. 1 shows the cyclic relationship among the
spectrum owner, providers and end users through the arrows
connecting the upper and lower halves. To be specific, the
spectrum owner manages a chunk of available spectrum bands,
i.e., bands not used by primary incumbents, and the WSPs
purchase these spectrum bands and provide service which
several end users buy in a limited geographical region. We
assume that multiple end users can access the same target
WSP without blocking and interfering with each other.



For the provider, Si, we denote Di to be the estimated
demand of bandwidth requested by the end users and qi to be
the quality of spectrum bands. Due to the opportunistic nature
of DSA, each WSP should base their spectrum band marketing
preference (spectrum quality) on criteria as diverse as through-
put, goodput, probability of primary users’ return, vulnerability
to denial-of-service attack, etc. The characterization of such
spectrum quality index is an important issue in the context of
spectrum pricing model. In addition, we denote pi to be the
advertised price per unit of the spectrum bands for provider
Si. The end users in the DSA market could be price-sensitive
or quality-sensitive [2]. Let θ ∈ [0, 1] and 1− θ represent the
price-sensitivity and quality-sensitivity factors for end users
respectively. For example, 0.5 < θ ≤ 1 means that the end
users are more concerned about the price than the quality and
vice versa.

According to marketing principles [6], the demand function
should satisfy the following properties:
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Fig. 1. The DSA market model.

Properties:
1) Di is a continuous, bounded and differentiable function

of pi and qi.
2) Di is decreasing with respect to provider Si’s price,

i.e., ∂Di/∂pi < 0, and increasing with respect to the other
provider’s price, i.e., ∂Di/∂pj > 0 for all j 6= i.

3) Di is increasing with respect to provider Si’s quality
of spectrum bands, i.e., ∂Di/∂qi > 0, and decreasing with
respect to the other provider’s quality of spectrum bands, i.e.,
∂Di/∂qj < 0 for all j 6= i.

4) The total market share is a decreasing function of each
individual price pi, i = 1, · · · , n, i.e., ∂(

∑i=n
i=1 Di)/∂pi < 0,

and an increasing function of each individual quality of
spectrum bands qi, i = 1, 2, · · · , n, i.e., ∂(

∑i=n
i=1 Di)/∂qi > 0.

According to the above specifications, we characterize Di

based on the linear price-and-quality dependent demand func-
tions [7], [8] as:

Di = mi + θ(−aipi +
∑

j 6=i

bijpj + πi∆pi)

+(1− θ)(ciqi −
∑

j 6=i

dijqj − γi∆qi), (1)

where the parameters mi, ai, bij , πi, ci, dij and γi are positive
constants.

In Equation (1), mi represents the base market share for
Si, which depends on its public reputation, capital, time the
WSP existing in the market, etc [6]. ai and ci represent the
self-influence factors to Si from itself with respect to the price
and quality respectively. bij and dij represent the influence to
Si from Sj with respect to the price and quality respectively.
Note that bij and bji are not equal. We assume that ai >
bij , and ci > dij for all j 6= i. This assumption indicates
that one WSP’s demand in terms of the price and quality of
spectrum bands is not dominated by any other provider. ∆pi

and ∆qi represent the price and quality difference respectively.
Let provider Si change its price from pi to p

′
i or quality from

qi to q
′
i. Then we define the change in these quantities as

∆pi = pi − p
′
i or ∆qi = qi − q

′
i respectively.

Let Ki be the cost for provider Si incurred by purchasing
and maintaining the spectrum bands, which depends on the
size, li, and quality, qi, of these bands. We also use a linear
cost function as:

Ki = αqili + β, (2)

where α and β are positive constants. It is intuitive that Ki is
increasing with respect to li and qi.

Based on Equations (1) and (2), we can derive the profit
function, Ui, for provider Si as follows:

Ui = piDi −Ki

= mipi + θ(−aip
2
i + pi

∑

j 6=i

bijpj + π∆pi)

+(1− θ)piWi −Ki. (3)

where Wi = ciqi −
∑

j 6=i dijqj − γi∆qi. The secondary
order derivation of Ui with respect to pi yields: ∂2Ui/∂p2

i =
−2ai < 0, showing Ui is strictly concave with respect to pi.

III. NON-COOPERATIVE PRICING GAME

In this section, we look into the pricing strategies for WSPs
from the game theoretic perspective. For simplicity, we assume
that the spectrum quality for each provider, qi, is prescribed
by the spectrum resource owner and cannot be freely changed.

Considering that every provider is selfish and profit-seeking,
we formulate a non-cooperative game among WSPs using the
profit as the payoff. Each WSP will choose its own pricing
strategy independently so as to maximize their individual
payoffs. Note that this game is not a static one-shot game
because the WSPs can dynamically change their prices.

In the beginning of the game, the WSPs need to set their
initial prices. Since Ui is strictly concave with respect to pi,
the initial price, p∗i , for player Si can be obtained by setting
∂Ui/∂pi = 0 and solving for p∗i , which gives:

p∗i =
mi + θ

∑
j 6=i bijpj + (1− θ)Qi

2θai
, (4)

where Qi = ciqi −
∑

j 6=i dijqi. From Equation (4), we can
see that the optimal initial price for provider Si, p∗i , depends
on the prices of others. Denoting P ∗ = (p∗1, p

∗
2, · · · , p∗n) to be

the optimal initial price vector for all n providers calculated
from Equation (4), we have the following theorem:



Theorem: P ∗ is not the Nash equilibrium but the Pareto
optimal strategy set for this pricing game.

Proof:
(i) P ∗ is not the Nash equilibrium.
In the non-cooperative game, a set of strategies for the

players is said to be Nash equilibrium if no player can increase
its individual payoff by unilaterally changing its strategy [9].

Consider the scenario where provider Si changes its price
from the optimal initial price, p∗i , by amount of ∆pi, and
all other providers maintain their initial prices. Note that the
price difference, ∆pi, is positive when the price is lowered
and negative when the price is increased. The new price, p

′
i,

is equal to p∗i −∆pi and the new estimated demand, D
′
i, for

Si is given by:

D
′
i = mi+θ(−aip

′
i+

∑

j 6=i

bijpj+πi(p∗i−p
′
i))+(1−θ)Qi. (5)

The corresponding payoff for Si, U
′
i , is given by:

U
′
i = p

′
iD

′
i −Ki, (6)

U
′
i is also strictly concave with respect to p

′
i and so we

can calculate the optimal new price, p
′∗
i , to maximize U

′
i by

solving ∂U
′
i /∂p

′
i = 0, which is given by:

p
′∗
i =

mi + θ(
∑

j 6=i bijpj + πip
∗
i ) + (1− θ)Qi

2θ(ai + πi)
, (7)

Based on Equations (4) and (7), we have:

p∗i − p
′∗
i =

πi(mi + θ(−aip
∗
i +

∑
j 6=i bijpj) + (1− θ)Qi)

2θai(ai + πi)

=
πiDi(p∗i )

2θai(ai + πi)
, (8)

where Di(p∗i ) is the estimated demand for Si using the initial
price p∗i , which is always positive. Also, the denominator is
made up of positive terms only. Hence, p∗i − p

′∗
i > 0. Since

U
′
i is strictly concave and has an unique maximum, we see

that U
′∗
i is the maximum payoff for Si and U

′∗
i > U∗

i .
Therefore, Si can obtain greater payoff by lowering its price

with ∆pi = p∗i −p
′∗
i unilaterally and thus, P ∗ is not the Nash

equilibrium for this game.
(ii) P ∗ is the Pareto optimal strategy set.
By definition, an outcome of a game is Pareto optimal if

any strategy change that makes one player better off must
necessarily make someone else worse off [9].

From (i), we know that given the optimal strategy set P ∗,
provider Si can increase its payoff by cutting the price from p∗i
to p

′∗
i if others maintain their prices the same. However, based

on Property 2, we know that the estimated demand for the
other provider, Sk, will decline if Si reduces its price. Since Sk

does not change the price, its payoff will also decrease because
of the reduction in the demand. Hence, the improvement of the
payoff for Si is associated with the decrease in other providers’
payoffs. In other words, player Si cannot increase its payoff
without hurting other players. Thus, P ∗ is the Pareto optimal
strategy set for the game.

IV. PRICE WAR

Based on the analysis in the previous section, in the be-
ginning of the game, all players will set their initial prices
following the Pareto optimal strategy set, P ∗. However, since
the Pareto optimal point is not the equilibrium, the players
who are greedy and selfish also have incentives to markdown
their prices to capture more market share and increase the
payoffs even though this will harm others’ interests. The price
war occurs when one or multiple WSPs lower their prices,
resulting in similar actions by others. In this section, we will
study the price war in the DSA market.

We consider two types of price wars:
• Short-term price war: Some providers lower their prices

in moderation in order to maximize the profit in the short
term and others also lower the prices to match.

• Long-term price war: Some big WSPs with high market
share drastically cut prices in order to absorb much more
market share with the long-term goal of monopolizing
the entire market and others try to fight against it.

For both scenarios, we will investigate the motivations and
impacts behind the price wars, as well as the responses of
participants.

A. Short-term Price War

In the short-term price war, we consider one typical WSP,
Si, to be the first to cut price. From Section III, we know
that Si can maximize its payoff in the short term by cutting
its price to p

′∗
i following Equation (7). Thus, being a rational

player, provider Si will lower the price from the initial Pareto
optimal price p∗i to p

′∗
i because further price cut will decrease

the profit. Provider Si will gain a larger market share and profit
if other providers ignore its deviation and take no actions. This
happens in the real market scenario where other WSPs either
think it is just a simple promotional activity or do not want to
be involved in the price war. However, since the market share
and profits of other providers will shrink because of the price
cut of Si, it is also reasonable for them to respond accordingly,
i.e., lowering the price to match. Hence, if provider Sk decides
to respond, it will also follow the best price cutting strategy
based on Equation (7) as:

p
′∗
k =

mk + θ(bkip
′∗
i +

∑
j 6=i,j 6=k bkjpj + πkp∗k) + (1− θ)Qk

2θ(ak + πk)
,

(9)
where p∗k is the Pareto optimal initial price for provider Sk.

As more and more players make responses, a price war
occurs among the providers until another Pareto optimal point,
P
′∗ = (p

′∗
1 , p

′∗
2 , ·, p′∗n ), is reached. As a result, since all players

lower their prices, based on Equation (3), we can see that both
initiators and followers of the price cut cannot benefit from
the price war but rather lose profit. Afterwards, if someone
continues to cut the price, another round of price war will
start again and the profits for all WSPs will further decrease.

From the perspective of end users, this short-term price war
is good because they can take advantage of lower prices to
use licensed spectrum bands. However, from the perspective



of WSPs, they will lose profits in the price war and hence
the WSPs will eventually end this price war when they reach
the point of no returns. Therefore, the short-term price war is
self-limiting at some Pareto optimal point. In Section V, we
will conduct the numerical analysis to investigate the process
and outcome of the short-term price war.

B. Long-term Price War
Sometimes in the DSA market, some big WSPs with high

market bases are willing to take the risk of losing profit by
drastically cutting prices in order to absorb as much market
share as possible. Their long-term goal is to monopolize the
entire market in the future, and because of their initial size,
they are fairly immune to temporary loss of profits. Eventually,
this will result in some small WSPs with low market base to
be forced to exit this market because they lose many end users
and cannot sustain huge loss in profit. On the other hand, to
recover the loss in the price cut, the large WSPs monopolizing
the entire market will eventually raise their prices again, even
greater than the previous prices.

There is no doubt that this kind of price war will undermine
the normality of the DSA market because it leads to the mo-
nopolization and without appropriate competitions, the market
cannot guarantee the high service level and reasonable price to
end users. Hence, it is necessary to take measures to prevent
such price war. Here, we discuss two different scenarios.

1) The biggest WSP launches the price war:
In this case, the WSP with the largest market base tries to

monopolize the DSA market by cutting the price significantly.
Without loss of generality, let provider Si be the biggest WSP
who cuts the price by t (Typically, t is larger than p∗i −p

′∗
i ). If

the other WSPs do not respond to this price cut, they will lose
many end users, which may threaten their survival. However,
price cutting from a small WSP individually may not work
because its market base and influence are much weaker than
the biggest WSP. Hence, the most effective way out for them
is to cooperate to compete with Si.

If the other providers take coordinated action to prevent
Si capturing the end users from them, provider Si will not
gain any benefits from this price war and may call off the
price cut. At the same time, they will also try to minimize the
loss in the profit during the competition. Thus, the effective
countermeasure is that all other providers lower their prices
simultaneously such that the demand for Si after it reduces
the price, Di(p∗i −t), remains the same as before, Di(p∗i ), and
their total loss in profits can be minimized. More specifically,
denote ∆pj to be the price cut for provider Sj , j 6= i, from
Equation (5), the demand for provider Si after the price cut,
Di(p∗i − t), is expressed as:

Di(p∗i − t) = mi + θ(−ai(p∗i − t) +
∑

j 6=i

bij(pj −∆pj)

+πit) + (1− θ)Qi. (10)

Imposing Di(p∗i − t) = Di(p∗i ), we have:

Di(p∗i − t)−Di(p∗i ) =
∑

j 6=i

bij∆pj − (ai + πi)t = 0 (11)

Moreover, denote Dj(p∗j−∆pj) to be the demand for provider
Sj , the corresponding profit, Uj(p∗j −∆pj), is given by:

Uj(p∗j −∆pj) = (p∗j −∆pj)Dj(p∗j −∆pj)−Kj . (12)

Therefore, the cooperative response can be described as:

max
∆pj∈(0,p∗

j
)


∑

j 6=i

Uj(p∗j −∆pj)


 ,

subject to
∑

j 6=i

bij∆pj − (ai + πi)t = 0. (13)

This nonlinear programming optimization problem can be
solved numerically. As a consequence, if all other WSPs
cooperatively adopt the strategy described in Equation (13),
the biggest provider, Si, cannot increase its market share by
the price cut but will additionally suffer the loss in profit.

2) Multiple big WSPs collude to launch the price war:
In the open DSA market, it is technically possible for WSPs

to communicate with each other. Hence, the collusion among
big WSPs cannot be overlooked.

Let us consider the scenario where multiple big WSPs
collude to launch a price war to capture most users and
force some small WSPs out of this DSA market. Since the
combination of multiple WSPs always dominates the market,
it is not difficult for them to monopolize the entire market. In
this scenario, the cooperation of the small WSPs to combat this
collusion may no longer work because they are not capable of
competing with multiple big WSPs. Under this situation, it is
necessary for the spectrum resource owner to set a regulation
to avoid such price war. For example, the spectrum resource
owner can set a price threshold, p0, and if the prices of big
WSPs are lower than this threshold, the spectrum resource
owner will stop selling the spectrum bands to them. The value
of the price threshold, p0, should be set appropriately to make
both big WSPs and small WSPs coexist in the DSA market.
The determination of p0 is not within the scope of this paper.

V. NUMERICAL RESULTS

In this section, we present results of the price wars through
numerical analysis. We consider three WSPs (S1, S2, S3) and
assume S1 > S2 > S3 in terms of the base market and
influence. Let θ = 0.8, meaning that the end users are more
concerned about the price than quality. The parameter values
used in the analysis are given in Table I. Values of α and β
in Equation (2) are set to 8 and 500 respectively.

TABLE I
THE PARAMETER VALUES IN THE NUMERICAL ANALYSIS

WSP mi ai bij πi ci dij qi li

S1 200 12 (7.5, 7) 5 100 (25, 20) 1.0 500

S2 140 11 (8, 7.5) 5 90 (30, 25) 1.1 440

S3 80 10 (8.5, 8) 5 80 (35, 30) 1.2 380

A. Pareto Optimal Strategy

First, we calculate the initial Pareto optimal prices for
the providers based on Equation (4) as: p∗1 = 28.1735,
p∗2 = 28.4245 and p∗3 = 28.6935. Fig. 2 shows that while



provider S1 lowers its price to increase the profit, the profits of
other two WSPs will monotonically decrease if they maintain
their initial prices. This illustrates the efficiency of Pareto
optimal strategies. Moreover, each curve in Fig. 3 represents
the profit of one particular WSP who lowers its price while
others maintain their initial prices. As shown, every provider
has a maximum profit that can be achieved by lowering price
unilaterally, which could be the incentive to launch price wars.
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B. Short-term Price War
Without loss of generality, let the biggest WSP, S1, be the

first to cut the price following Equation (7) and then S2 and S3

respond as Equation (9). Fig. 4 shows the change of price and
profit for each provider. As illustrated, the price cut results
in loss of profits for all WSPs from one round to the next.
Hence, it is reasonable to stop cutting price further at some
Pareto optimal point in order to avoid the further loss in profit.
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Fig. 4. The change of prices and profits for the WSPs in the short-term price
war. (a) Price; (b) Profit.

C. Long-term Price War
In the long-term price war, the biggest provider, S1, will

significantly reduce its price to capture as many end users as

possible. Fig. 5 shows the estimated demands for three WSPs
when S2 and S3 (a) do not respond and (b) cooperatively
respond to the long-term price war. It is observed that if S2

and S3 maintain initial prices, they will lose many end users,
while simultaneously S1 will acquire much more market share
as it wishes. However, if S2 and S3 cooperate to respond based
on Equation (13), S1 cannot increase the market share, while
at the same time, the demands of S2 and S3 will steadily
increase due to Property 4. Thus, S1 will eventually call off
the price cut because this collaborative response makes it gain
nothing but enhances its competitors’ market share.
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Fig. 5. The estimated demands for the WSPs in the long-term price war. (a)
No response; (b) Cooperative Response.

VI. CONCLUSION

In this paper, we investigated the impact of price wars
in DSA markets. Assuming that multiple independent WSPs
compete in the market, we modeled a non-cooperative pricing
game using the profit as the payoff. The Pareto optimal
price strategies for all WSPs were analytically derived and
proven. Then, we studied two different types of price wars
and revealed the motivations behind them. We also proposed
a cooperative countermeasure for the small WSPs to respond
to the long-term price war launched by the biggest WSP with
the monopolization attempt. Through the numerical analysis,
we corroborated the efficiency of the Pareto optimal strategies,
demonstrated how the price war starts and proceeds, and
showed the potential responses to the price wars.
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