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Abstract—The cognitive radio based IEEE 802.22 wireless
regional area network (WRAN) is designed to operate in the
under–utilized TV bands by detecting and avoiding primary TV
transmission bands in a timely manner. Such networks, deployed
by competing wireless service providers, would have to self-
coexist by accessing different parts of the available spectrum
in a distributed manner. Obviously, the goal of every network is
to acquire a clear spectrum chunk free of interference from other
IEEE 802.22 networks so as to satisfy the QoS of the services
delivered to the end–users. In this paper, we study the distributed
WRAN self–coexistence problem from a minority game theoretic
perspective. We model the spectrum band switching game where
the networks try to minimize their cost in finding a clear band.
We propose a mixed strategy that the competing networks must
adhere to in order to achieve the Nash equilibrium. Simulation
experiments have also been conducted and results corroborate
with the theoretical analysis.

I. I NTRODUCTION

IEEE 802.22 based on cognitive radios (CRs) is a wireless
regional area networks (WRAN) standard that can operate
in the sub–900 MHz licensed bands on an non-interfering
basis [1], [2]. Cognitive radio is the key enabling technol-
ogy in this standard that can periodically perform spectrum
sensing and can operate at any unused frequency in the
licensed bands [9]. The most important regulatory aspect is
that cognitive radios must not interfere with the operation in
licensed bands and must identify and avoid such bands in
timely manner [3], [4]. If any of the spectrum bands used
by WRAN is accessed by the licensed incumbents, the IEEE
802.22 devices (e.g., base stations (BS) and consumer premise
equipments (CPE)) are required to vacate the channels within
the channel move time and switch to some other channel [6].

One of the major challenges in the newly proposed IEEE
802.22 standard is ensuring quality of service (QoS) among
IEEE 802.22 networks themselves, i.e., in other words, main-
taining self–coexistence. Though most of the work on IEEE
802.22 has been on the enhancement of reliable spectrum
sensing, there is hardly any investigation on issues related to
self–coexistence. In areas with significant high primary incum-
bents (licensed services), open channels will be a commodity
of demand. Therefore, dynamic channel access among IEEE
802.22 networks will be of utmost importance so that the
interference among IEEE 802.22 networks can be minimized;
else the throughput and quality of service (QoS) will be com-
promised. Different from other IEEE 802 standards where self-

coexistence issues are only considered after the specification
essentially is finalized, it is required for IEEE 802.22 to take
the proactive approach and mandate to include self-coexistence
protocols and algorithms for enhanced MAC as revision of the
initial standard conception and definition [8].

In this paper, we focus on the self–coexistence of IEEE
802.22 networks from a game theoretic perspective. We use the
tools fromminority game theory[5] and model the competitive
environment as a distributedModified Minority Game(MMG).
We consider the system of multiple overlapping IEEE 802.22
networks operated by multiple wireless service providers that
compete for the resources and try to seek a spectrum band void
of interference from other coexisting IEEE 802.22 networks.
If interfered by other IEEE 802.22 networks at any stage of
the game, the networks face a binary choice of whether to
stick to the band (assuming the interferers might move away)
or move to another band itself. As networks do not have
information about which bands other IEEE 802.22 networks
will choose, the game is played under incomplete information.
So, the questions that need to be answered are: how can each
network decide to co-operate or not co-operate in this minority
game? Is there an equilibrium solution to this problem? How
will the solution change if some common information is
available to all the networks? With the help of proposed
MMG model, we intend to help all the networks make better
decisions even without direct knowledge of other networks’
strategies. There are several advantages for taking the MMG
approach. First, the MMG model works in a distributed
manner where a central authority or a centralized allocating
mechanism is not needed thus making the system scalable.
Second, direct communications or negotiation messages are
not needed among the networks thus reducing overhead in
communication. Third, being rational entities in the game,
IEEE 802.22 networks individually try to maximize their own
payoffs or minimize the cost of channel switching subject
to constraints on resource usage. We investigate both pure
and mixed strategy mechanisms from networks’ perspectives.
The important investigation in such a game is the existence
of any equilibrium point– with a set of strategies played by
each of the networks such that no network can benefit any
more by changing its own strategy unilaterally while the other
networks keep their strategies unchanged. This equilibrium is
known as the Nash equilibrium [10]. We conduct simulation



experiments with multiple competing IEEE 802.22 networks
the results of which successfully corroborates with theoretical
analysis. To the best of our knowledge, this research is the
first attempt to apply the minority game framework in IEEE
802.22 networks and to solve the self–coexistence problem in
a distributed manner.

The rest of the paper is organized as follows. In section II,
we design the self–coexistence problem as dynamic channel
switching game from a minority game model perspective. We
analyze the game in section III with pure strategy and obtain
sub-optimal solution. We extend the analysis to the mixed
strategy space in section IV to achieve Nash equilibrium.
Simulation experiments and results are discussed in section V.
Conclusions are drawn in last section.

II. GAME FORMULATION

In this section, we formulate the self–coexistence problem
as a dynamic channel1 switching game. We assume that
N IEEE 802.22 networks (players) operated byN separate
wireless service providers in a region are competing for one of
M separate orthogonal spectrum bands not used by primary
incumbents. The IEEE 802.22 networks can be partially or
completely overlapped geographically (i.e., coverage area)
with each other. If one network is in the interference range of
another, they can not use the same spectrum band; otherwise
QoS of both the networks will suffer. In this scenario, we
model the dynamic channel switching as MMG where the
aim of each network is to capture a spectrum band free of
interference. We assume the only control information needed
for participating successfully in the MMG is the number of
overlapping competitors in the region which can be known
from the broadcasting beacons by each of the IEEE 802.22
networks in Foreign Beacon Period (FBP) [2]. Before, we
formulate the minority game, let us briefly discuss this theory.

A. Minority Game Theory

Minority game theory, originally proposed by Challet and
Zhang [5], is a branch of game theory for studying competition
and self–imposed cooperation in a non–cooperative game with
limited resources. Players in this game usually play with
binary strategy set and do not interact or negotiate with each
other directly regarding the strategy set. Classical Minority
game or the El Farol bar problem was first proposed in [5].
In the bar problem, a group ofn persons have to decide
independently and at the same time if they want to go to the
El Farol bar on Friday night. At each step, a player hasbinary
strategy set: to go or not to go to the bar. Going to the bar
is enjoyable only if the bar is not too crowded. Now, if alln
players decide not to go to the bar thinking that the bar will
be crowded then the bar will be empty. However, if they all
decide that the bar will be empty and decide to go, then the
bar will be overcrowded.

1Throughout this paper, we use the words “channel”, “band” and “chunk”
interchangeably unless explicitly mentioned otherwise.

B. Decision Problem
We consider the most generic abstraction of “always greedy

and profit seeking” model ofN competing IEEE 802.22
networks operated by wireless service providers. Without loss
of generality, we focus our attention on a particular network
i ∈ N . Due to homogeneity of the networks, the same
reasoning applies to all other networks.

At the beginning of the game, each network dynamically
chooses one of theM allowable spectrum bands for its
operations. If two or more overlapped networks operate using
the same spectrum band, then interference will occur and
their transmissions will fail. Thus the networks will have to
make new decisions for channel switching in the next stage
of the game. Each of these stages of the game is formulated
using modified minority game theoretic framework. The game
ends when all the networks are successful in capturing a
clear spectrum band, and is re-initiated if the primary TV
transmission starts using IEEE 802.22 occupied band(s), and
thus the spectrum usage report changes for one or more
networks. In such a case, the IEEE 802.22 network(s) involved
will again try to access new band(s). The optimization problem
is to find the mechanism of achieving minimum number of
failed transmission stages from the networks.

As far as the decision strategy in this MMG model is
concerned, if interfered at any stage of the game, network
i has the binary strategy set of switching to another band
(expecting to find a free spectrum band) or staying on the
current band (assuming the interferers will move away). Using
game theoretic notation, the binary strategy set for networki
can be represented as

Si = {switch, stay} (1)

To generalize, we assume the existence of strategy sets
S1, S2, · · · , SN for the networks1, 2, · · · , N . In this game,
at every stage, if network1 chooses strategys1 ∈ S1,
network 2 chooses strategys2 ∈ S2 and so on, we can
describe such a set of strategies chosen by allN networks
as one orderedN -tuple, s = {s1, s2, · · · , sN}. This vector of
individual strategies is called a strategy profile (or sometimes
a strategy combination). For every different combination of
individual choices of strategies, we would get a different
strategy profiles. The set of all such strategy profiles is called
the space of strategy profilesS′. It is simply the cartesian
product of the vectorsSi for each network which can be
written asS′ = S1 × S2 × · · · × SN .

C. Channel Switching Cost Function
We use multi–stage modified minority game where each

stage of the game can be represented in astrategic form[7].
Each stage of the game is played by having all the networks
(players) simultaneously pick their individual strategies2. This
set of choices results in some strategy profiles ∈ S′, which

2We assume that networks are synchronized with decision making at every
stage of the game. However, a closer look at the game indicates that even
asynchronization at any stage does not impact any change to the results.



we call the outcome of the game. Each network faces a cost
of preference over these outcomess ∈ S′.

At the beginning of a stage, when an interfered network
i chooses either“switch” or “stay” , it faces one of two
possible costs in terms of time units. Note that, throughout
this paper, we assume the cost as time units consumed. Then
if the network i chooses to switch, it faces a cost of finding
a clear spectrum band in the game. Note that, in a game of
N networks competing overM spectrum bands, the network
i might find the clear channel just after1 switching, or it
might take more than1 switching as multiple networks might
choose the same band chosen by networki resulting in a
subgame. Moreover, note that, with varyingN and M , the
average cost of finding a clear band will also vary. However,
how this cost will vary is not known. In this regard, we propose
a multiplicative form for the cost for finding a clear band in the
MMG. We define the expected cost of finding a clear channel,
if the network chooses the strategy of switching, as

E[Ci(si, s−i)] = cf(N,M) (2)

over all possible resulting subgames where,si ands−i denote
the strategies chosen by networki and rest of the networks
respectively. We assume thatc is the cost of single switching
andf(·) is a function that depicts the varying behavior of the
cost withN andM ; we discuss about the nature off(·) later.

At the beginning of the stage, if the networki chooses
the strategy of “stay”, it might fall in one of three different
scenarios. (i) All the other networks which were attempting to
operate using the same band as networki, might move away
thus creating a clear band for networki. (ii) All the other
networks which were attempting to operate using the same
band as networki, might also “stay”, thus wasting the stage
under consideration and repeating the original gameG, which
started at the beginning of the stage. (iii) Some of the networks
move (“switch”) while some networks end up being in the
same band (“stay”), thus wasting the stage under consideration
and creating a subgameG′ of the original gameG. More
detailed explanations for subgameG′ will be presented later.
We define the cost functions as

Ci(si, s−i) =

{
0 Scenario (i)
1 + Ci(G) Scenario (ii)
1 + Ci(G

′) Scenario (iii)
(3)

III. G AME ANALYSIS

With the strategy set and cost functions defined, the op-
timization problem in this game is to find a mechanism of
switching or staying such that cost incurred can be minimized
and an equilibrium can be achieved. We typically assume all
the players are rational and pick their strategy keeping only
individual cost minimization policy in mind at every stage
of the game. We intend to find if there is a set of strategies
with the property that no network can benefit by changing
its strategy unilaterally while the other networks keep their
strategies unchanged (Nash equilibrium).

A. Modified Minority Game in Strategic form
We analyze the gameG = (P : S : C) in strategic form by

taking the iterated dominance approach.P denotes the set of
players (competing networks),S denotes the strategy set andC

denotes the cost. At this point, we start with thepure strategy
spaceplayed by all the networks. This means that network
i will choose a strategy, say “switch”, with probability “1”
or “0”. To simplify investigation of Nash equilibrium with
pure strategy space, we consider the reduced strategic–form
minority game with two players (networki and j) coexisting
on one band. The game is represented in strategic form in
table I. Each cell of the table corresponds to a possible
combination of the strategies of the players and contains a
pair representing the costs of playersi and j, respectively.

i\j Switch Stay
Switch (c,c) (c,0)
Stay (0,c) Back to Original Game

TABLE I
STRATEGIC–FORM MINORITY GAME WITH NETWORK i AND j

Once the game is expressed in strategic form, it is usually
interesting to find if Nash equilibrium exists and if the equilib-
rium is helpful for the system in minimizing the cost incurred.
In this regard, we present the following lemma.
Lemma 1: Pure strategy dominant response results in sub–
optimal solution of the channel switching minority game.

Proof: We proceed with the iterated strict dominance to
solve the game as presented in table I. If we consider the
strategy space from the point of view of networki, then it
appears that the “switch” strategy is strictly dominated by the
“stay” strategy. This means that we can eliminate the first row
of the matrix, since a rational networki will never choose
this strategy. Similar reasoning is applicable for networkj,
leading to the elimination of the first column of the matrix. As
a result, the dominant response from both the networks in this
minority game is{stay,stay} resulting in increased cost as they
are back to the original game and the stage under consideration
is wasted. Thus pure strategy dominant response leads to a
sub–optimal solution for the channel switching minority game
and Nash equilibrium can not be achieved. The special case
of two–player game can be easily applied to generalizedN–
player game and the result would still be the same.

With the pure strategy space proving to be ineffective in this
minority game, we lean towards mixed strategy space for the
networks for finding the Nash equilibrium with the optimal
solution. In next section, we discuss the modified minority
game with mixed strategy.

IV. M ODIFIED M INORITY GAME WITH M IXED STRATEGY

We analyze the game in this section from two perspectives:
(i) a special case where all the networks are coexisting on a
single band at the start of the game; and (ii) the generalized
case where we start at any random stage of the game where
network i is coexisting on a spectrum band with a few other
networks (say,n− 1, wheren− 1 < N − 1).

A. Special Case MMG Model
With the mixed strategy space for the networks, we de-

viate from the pure strategy space game by assigning prob-
abilities to each of the strategies in the binary strategy
space. We define the mixed strategy space of networki as



Smixed
i = {(switch= p), (stay= (1− p))} where, network

i chooses the strategy “switch” with probabilityp and chooses
the strategy “stay” with probability(1−p). Since all networks
are assumed to behave identically, we assume similar mixed
strategy space for all the networks. The question now is what
values of (p, 1 − p) tuple will help us achieve the optimal
solution, i.e., in other words, if there exists any finite non-
zero probability of “switch” and “stay”?

In the special case, we start the game with all(N − 1)
other networks coexisting with networki on one band and
choose a strategy from mixed strategy space. Then regardless
of the strategy chosen by networki, the resulting subgame
will obtain one of the following possible outcomes: allN − 1
networks choose “switch”, orN−2 networks choose “switch”,
or · · ·, or 0 networks choose “switch”. To find the Nash
equilibrium, we then determine the expected cost if networki
under consideration chooses to “switch” or “stay”. Following
the switching cost for finding a non-occupied band as indicated
previously in equation (2), the expected cost over all possible
resulting subgames for networki, if it chooses to switch, is

E[Cswitch
i ] =

N−1∑

j=0

Qj × cf(N,M) (4)

where, j denotes the number of other networks choosing
to “switch” and Qj denotes the probability ofj networks
switching out of otherN − 1 networks and is given by

Qj =
(

N − 1
j

)
pj(1− p)(N−1−j) (5)

With the help of equation (5), equation (4) can be reduced to

E[Cswitch
i ] = cf(N,M) (6)

On the other hand, the expected cost for networki, if it
chooses “stay” can then be given as

E[Cstay
i ] =

N−2∑

j=0

Qj(1 + E[Ci(G′(N−j))]) + Q(N−1) × 0 (7)

where,E[Ci(G′(N−j))] denotes the expected cost incurred in

subgameG′(N−j). Note that, ifE[Cswitch
i ] < E[Cstay

i ], being
the rational player, networki will always choose the strategy
“switch” thus going back to the pure strategy and as a result
can not achieve the Nash equilibrium (refer Table I in lemma
1). Again, if E[Cswitch

i ] > E[Cstay
i ], similar reasoning can

be applied for the strategy “stay” and Nash equilibrium can
not be achieved. Thus for the existence of mixed strategy
Nash equilibrium,E[Cswitch

i ] = E[Cstay
i ], i.e., networki is

indifferent between “switch” or “stay” regardless of strategies
taken by other networks. In other words, the probability tuple
(p, 1 − p) helps in choosing the strategy such that networki
is never dominated by response from any other networks and
thus will not deviate from the mixed strategy space(p, 1− p)
unilaterally to obtain lower cost. To find the optimal values
for mixed strategy space, we equate equations (6) and (7) as

E[Cnash
i ] = cf(N,M) =

N−2∑

j=0

Qj(1 + E[Ci(G′(N−j))] (8)

Note that, the expected cost of the game at Nash equilibrium
is actually not dependent onj as evident from first part of the
equation (8), i.e., how many networks are actually switching;
rather, the cost varies withN , the number of networks and
M , the number of bands. Thus the expected cost for network
i in the subgameG′(N−j) can be deduced to be same as that
in the original game. Then, we can rewrite equation (8) as

N−2∑

j=0

Qj =
cf(N,M)

1 + cf(N,M)
(9)

Using binomial expansion, equation (9) can be reduced to
QN−1 = 1

1+cf(N,M) . ExpandingQN−1, we obtain the closed
form for p as

p =
( 1

1 + cf(N,M)

) 1
N−1

(10)

For any values ofN and M , we find thatp has a non-zero
finite value thus proving the existence of mixed strategy Nash
equilibrium point. In other words, the mixed strategy tuple,
(p, 1− p) presented in equation (10) constitutes the dominant
best response strategy in this channel switching game.

To have a better insight into the analysis3, we assume a
simple closed form off(N, M) = NM

M−N . The intuitive reason
behind proposing such function is that expected cost to find a
clear band increases with increasingN but fixedM ; while the
cost decreases with increasingM but fixedN ; however, with
bothN andM increasing the cost varies simultaneously with
the ratio of M : N and the difference between them. Note
that, we could choose any other form forf(N,M) as long as
the above conditions are satisfied. With the above discussion,
we calculate the mixed strategy Nash equilibrium probabilities
p for different number of networks and allowable bands.
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Fig. 1. Mixed strategy Nash equilibrium probabilities a) with number of
competing networks; b) with number of bands

In figure 1(a), we present the mixed strategy Nash equi-
librium “switch” probability (p) with varying number of
competing networks. The probability calculation shows non-
zero finite values ofp thus proving the existence of mixed
strategy space for achieving Nash equilibrium. It is also clear
that with less number of networks competing for the available
resources, the networks are better off with a higher probability
of switching. Figure 1(b) strengthens the above claim where
the mixed strategy Nash equilibrium is plotted against varying

3Later, in simulation results section we conduct comparative analysis
between mathematical analysis and simulation experiments and we find
accurate corroboration between them.



number of bands with number of networks fixed. With less
bands available, networks show a less inclination of switching,
while with higher number of bands available the optimal
probability of switching is high. Next, we extend the above
result to a more generalized game framework.
B. Generalized Case MMG Model

Here, we focus our attention on a generalized stage of the
game where networki is coexisting on a single band with
(n−1) other networks (n−1 < N−1). ThenN−1 networks
(all networks other than networki) can be separated into two
separate sets: set of networksNi residing on the same band as
of networki and set of networksN−i not residing on the same
band as of networki. To find Nash equilibrium, we proceed
with similar approach as before and try to find the expected
cost when networki chooses “stay”. In table II, we present
the costs for networki with all possible subgame scenarios.

Scenario cost
(n− 1) ∈ Ni chooses “switch”; 0

0 ∈ N−i chooses “switch”
(n− 2) ∈ Ni chooses “switch”; 1 + E[Ci(G

′
2,0)]

0 ∈ N−i chooses “switch”
· · · · · ·

(n− 1) ∈ Ni chooses “switch”; 1 + E[Ci(G
′
0,N−n)]

(N − n) ∈ N−i chooses “switch”
· · · · · ·

0 ∈ Ni chooses “switch”; 1 + E[Ci(G
′
n,N−n)]

(N − n) ∈ N−i chooses “switch”

TABLE II
COSTS ASSOCIATED WITH ALL POSSIBLE SUBGAME SCENARIOS

Then the expected cost with networki choosing “stay” is

E [Cstay
i ] =

n−2∑

j=0

Qj∈Ni,0∈N−i
(1 + E[Ci(G′(n−j),0)])

+
n−1∑

j=0

Qj∈Ni,1∈N−i
(1 + E[Ci(G′(n−j),1)]) + · · ·+

n−1∑

j=0

Qj∈Ni,(N−n)∈N−i
(1 + E[Ci(G′(n−j),(N−n))])(11)

where,Qj∈Ni,k∈N−i
is the probability ofj ∈ Ni andk ∈ N−i

simultaneously choosing the strategy “switch” and so on. The
probability expression forQj∈Ni,k∈N−i

can be given as
(

n− 1
j

)
pj(1− p)n−1−j ×

(
N − n

k

)
pk(1− p)N−n−k (12)

Again, if networki chooses “switch”, the expected cost (over
all possible subgames) of finding a non-occupied band is

E[Cswitch
i ] = cf(N,M) (13)

To achieve the Nash equilibrium and to find the optimal values
for mixed strategy space, we equate equations (11) and (13).
Applying the same deduction that the expected cost for net-
work i starting from any subgameG′ is same as that from the
original gameG, we deriveQ(n−1)∈Ni,0∈N−i

= 1
1+cf(N,M) .

ExpandingQ(n−1)∈Ni,0∈N−i
, the expression forp becomes

pn−1 × (1− p)N−n =
1

1 + cf(N,M)
(14)

Solving the equation (14) with numerical analysis and aver-
aging over all possible values ofn, the mixed strategy Nash
equilibrium probability can be found. For any values ofN and
M , we find thatp has a non-zero finite value thus proving the
existence of mixed strategy Nash equilibrium point even in
the generalized MMG.

Note that, in the study so far, we have assumed that
N networks operated by multiple wireless service compete
among each other, i.e., any network is in the interference range
of all other (N − 1) networks. However, if allN networks
are not in competition with each other in the region, i.e., the
networks do not form a completely connected interference
constrained graph, the solution though simple and can be
derived from the complete competition scenario described
before, is worth mentioning. In this case where, networki has
l other networks(l ≤ N−1) in its interference range, the game
becomes anassymetrical modified minority game(AMMG).
The functionf(N,M) is modified as NMα(l)

M−Nα(l) where,α(l)
is a function depending on the number of interfering networks.
We assume0 < α(·) ≤ 1 such that, whenl = N − 1,
α(l) = 1. The only additional information networki needs
in the AMMG to successfully calculate its mixed strategy
Nash equilibrium probabilitypi, is the number of interfering
networks of each of thel networks which again can easily
be obtained using the foreign beacon broadcasting in IEEE
802.22. Rest of the analysis for AMMG can be carried out
in the exact same manner as MMG and mixed strategy Nash
equilibrium probability can be found.

V. SIMULATION EXPERIMENTS AND RESULTS

We conducted simulation experiments to evaluate the im-
provements achieved by the proposed mixed strategy. Source
code for the experiment has been written in C under Linux
environment. We assumedN IEEE 802.22 networks, operated
by N separate wireless service providers, compete for one of
M available spectrum bands. Each of the networks is associ-
ated with a mixed strategy space of “switch” and “stay”. The
system converges when all the networks capture a spectrum
band free of interference from other IEEE 802.22 networks.
N andM are given as inputs to the experiment.

In figure 2(a), we present the average system conver-
gence cost with25 competing cognitive radio (CR) networks.
Switching probability is varied for this simulation experiment
and different scenarios of available bands are considered. The
inference is that with increase in number of available bands,
the convergence cost decreases as claimed earlier through the
game analysis. However, the interesting observation is the
convex nature of the curves in figure 2(a), proving that a
point of minima exists for each of the curve. This minima
corresponds to the probability(p) for the mixed strategy Nash
equilibrium. Similarly, in figure 2(b), we kept the number of
available bands fixed but varied the number of competing
networks from10 to 25. Similar convex plots are obtained
proving the existence of mixed strategy Nash equilibrium
point. Moreover, as proposed in the cost function, the con-
vergence cost increases exponentially with the decrease in



difference betweenM andN .
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Fig. 2. Average system convergence cost a) with varying number of bands;
b) with varying number of competing networks

We show the switching probability (p) for achieving mini-
mized cost Nash equilibrium from the simulation experiments
and compare them with that found through game analysis in
table III. In figure 3, we plot the comparison results. It is found
that the Nash equilibrium probabilities calculated through
theoretical analysis corroborates with simulation experiments
thus justifying the proposed cost function and MMG model.

25 competing networks
Number of Theoretical Simulation

available bands analysis experiment
35 0.524421 0.53
40 0.602632 0.60
45 0.652256 0.65
50 0.683970 0.69

TABLE III
M IXED STRATEGY NASH EQUILIBRIUM PROBABILITY COMPARISON
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Fig. 3. Mixed strategy Nash equilibrium probabilities with number of bands

Next, in figure 4, the comparison between pure and mixed
strategy space mechanisms are conducted. For the experiment,
we varied both the number of available bands (from30 to 70)
and number of competing networks; however the network:band
ratio were always kept fixed at70%. We find that with increase
in number of bands and networks, the mixed strategy space
always performs better than the pure strategy space.

Last but not the least, we present different system con-
vergence costs following mixed strategy space for varying
network:band ratio (50%−70%) in figure 5. We find that with
increase in ratio of network:band, the system convergence cost
increases. However, the important insight into this convergence
cost lies in that fact that the cost does not increase in a simple
additive manner; rather in a more complex multiplicative
behavior with increase in ratio of number of networksN and
number of available bandsM , justifying the proposed cost
function nature in the mathematical analysis.
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Fig. 4. Average system convergence cost with Pure and Mixed strategy space
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Fig. 5. Average system convergence cost with varying network:band ratio

VI. CONCLUSIONS

In this research, we investigate the cognitive radio based
IEEE 802.22 networks that are being standardized for opera-
tion in the under-utilized TV bands. We studied the problem of
self–coexistence, i.e., how multiple overlapped IEEE 802.22
networks controlled by different service providers can operate
on the available spectrum and coexist. We use modified
minority game (MMG) to model the problem. We found that
the mixed strategy space for decision making perform better
than the pure strategy space in achieving optimal solution.
We also proved that the cost (time duration) of finding an un-
occupied band follows a complex multiplicative behavior with
increase in number of networksN and number of available
bands M . Simulation results demonstrated that the IEEE
802.22 networks would incur minimum cost by adhering to
the calculated mixed strategy switching probability and would
achieve the Nash equilibrium.
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