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Statistical Discrimination of Liquid Gasoline
Samples from Casework

ABSTRACT: The intention of this study was to differentiate liquid gasoline samples from casework by utilizing multivariate pattern recognition
procedures on data from gas chromatography-mass spectrometry. A supervised learning approach was undertaken to achieve this goal employing the
methods of principal component analysis (PCA), canonical variate analysis (CVA), orthogonal canonical variate analysis (OCVA), and linear discri-
minant analysis. The study revealed that the variability in the sample population was sufficient enough to distinguish all the samples from one
another knowing their groups a priori. CVA was able to differentiate all samples in the population using only three dimensions, while OCVA
required four dimensions. PCA required 10 dimensions of data in order to predict the correct groupings. These results were all cross-validated using
the ‘‘jackknife’’ method to confirm the classification functions and compute estimates of error rates. The results of this initial study have helped to
develop procedures for the application of multivariate analysis to fire debris casework.
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In fire investigations, gasoline is the most commonly encoun-
tered ignitable liquid. Ignitable liquids are petroleum based or
related products that have certain flammable or combustible proper-
ties. Ignitable liquids are commonly used as accelerants in arsons
to initiate or promote the spread of the fire.

If an individual sample can be discriminated from the larger
group, this can be of forensic interest. In fire debris analysis case-
work, liquid gasoline samples recovered during a fire investigation
have an unknown history and are subjected to various real world
conditions. These conditions ultimately introduce some variation to
the liquid gasoline sample as compared to gasoline from a service
station. Liquid gasoline samples recovered during fire investigations
were examined in order to determine the magnitude of variability
present in these types of samples. The goal of this study was to
determine whether liquid gasoline samples from casework could be
discriminated using statistical methods. Because of the sample size
and the number of components present in gasoline, traditional
methods of peak comparisons of the analytical data are difficult
and time consuming.

Gasoline is a volatile flammable liquid hydrocarbon mixture of
over 400 compounds (1). Depending on the production date of the
gasoline, these compounds may also include certain oxygenates
such as methyl-tert-butyl-ether (MTBE) or ethanol. Gasoline is pro-
duced in oil refineries from material that is separated from crude
oil via cracking and distillation and then subjected to various pro-
cesses that refine the product. The resulting reformulated gasoline
base fuel is a carefully blended and formulated product that must
meet specific guidelines and regulations as to its physical properties

and engine performance characteristics (2). It is generally distribu-
ted through pipelines to storage terminals as reformulated gasoline
base fuel to which an additive package is later blended in by the
individual gasoline companies. The additives in these packages are
added to the gasoline base fuel to either enhance fuel performance
or to correct deficiencies arising from its production (3).

The basis of the published research in the comparison of gaso-
line samples has been the variability of the refining operations and
blending processes. Mann conducted research to determine the
variability in gasoline samples utilizing heated headspace concen-
tration using a 60 m column in GC-FID (4). He noted significant
variation in the alkylate region between C4 and C8. The compari-
son methodology was based on a qualitative and quantitative exam-
ination (4). The qualitative examination was conducted first to
determine whether to include or exclude a sample based on visual
examination. If the samples appeared to be similar, the quantitative
examination was conducted using a sequential peak normalization
procedure. The research demonstrated the potential of gasoline
comparisons to eliminate or associate gasoline samples in forensic
casework. The limitations of the study include a comparison thresh-
old of up to 75% weathered sample and samples that had under-
gone significant degradation. At best, the methodology could only
determine limited positive associations (5).

Recently, multivariate analysis techniques have been applied in
an attempt to differentiate liquid gasoline samples under controlled
conditions (6–12). Multivariate analysis is the simultaneous statis-
tical consideration of relationships among many measured proper-
ties of a given system (13). It is typically applied to high order
systems, or systems that have more than one dependent variable,
where the variability cannot be observed by visual means or ana-
lyzed by univariate measures. This type of analysis allows one to
focus on the variables that best summarize a data set by using as
few variables as possible. The summary of the data is based on
how the measured variables, within a single observation of a sam-
ple, vary with each other. This snapshot of variability is useful in
testing hypotheses about the data quickly and efficiently. Infer-
ences about the data set can then be made based on observed
patterns or trends (14,15).
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Sandercock and Du Pasquier (9) conducted research to determine
the variability of polar compounds and polycyclic aromatic com-
pounds present in gasoline samples utilizing solid phase micro-
extraction and gas chromatography-mass spectrometry (GC-MS).
The researchers analyzed the data using two-dimensional (2D) and
three-dimensional (3D) principal component analysis (PCA) and
linear discriminant analysis (LDA) with cross-validation. The results
of this multivariate analysis highlighted the variation in the poly-
cyclic aromatic hydrocarbon content across the sample set. The
reported overall correct classification rate was 96–100% depending
on the location of the collected samples.

Also recently, a covariance mapping technique has been applied
to aid in computer-assisted pattern recognition procedures for GC-
MS data (11,12). This technique was used for both ignitable liquid
samples and samples collected from the passive headspace proce-
dure. Using the entire chromatogram, including the light volatile
components, the authors were able to distinguish between 10 differ-
ent samples of liquid gasoline.

GC-MS is utilized by the majority of forensic laboratories con-
ducting fire debris analysis. Typically, the laboratory’s procedures
refer to or reflect the guidelines set forth by ASTM-E 1618-06:
Standard Test Method for Ignitable Liquid Residues from Fire
Debris Samples by GC-MS (16). The comparison methodology in
this research, therefore, was designed to incorporate the latter
instrumentation.

This study was undertaken to examine the variability of gasoline
components in twenty retained liquid gasoline samples from fire
investigations in the New York area via gas chromatography
coupled with a mass spectrometer (GC-MS). The objective of mul-
tivariate analysis in this research was to reduce the dimensions of
the generated GC-MS data and to determine if any correlations
existed between the variables and or between the samples drawn
from the general population. A selection of the common compo-
nents present in gasoline was utilized to test the discrimination
potential of the multivariate methods. The multivariate methods
employed in this study were PCA, canonical variate analysis
(CVA), and orthogonal canonical variate analysis (OCVA) coupled
with LDA for numerical discrimination.

Methodology

Fifteen peaks were chosen in this study that represented the com-
mon components present in gasoline. The peaks and their identity
are given in Table 1. Gasoline contains abundant aromatics in a spe-
cific pattern such as ethylbenzene, m- & p- xylenes, o-xylene, and
the tri-substituted methyl benzenes, specifically 1,2,4 trimethylben-
zene (16). Keto and Wineman identified target compounds present
in gasoline including the isomers of trimethylbenzene and tetra-
methylbenzene (17). The latter literature sources were used as a
guideline to select the compounds of interest. The volatility of the
compounds chosen was also taken into consideration and was
expected to remain consistent up to roughly 75% evaporated (weath-
ered) by volume based on prior research (4). Twenty liquid gasoline
samples from casework were chosen for this initial study. The first
eight samples were analyzed using seven replicate analyses per sam-
ple. For the remaining 12 samples, three replicate analyses per sam-
ple were performed in order to test the discrimination power of the
multivariate procedures using different numbers of replicates.

The liquid gasoline casework samples were stored in amber
colored teflon lined screw top vials and kept in a storage cabinet to
limit light exposure. All samples were verified as containing gaso-
line prior to statistical analysis according to the criteria outlined in
ASTM-E 1618-06 (16).

All the samples in this study were analyzed directly on the
GC-MS using 1:50 dilutions of the gasoline samples in an internal
standard solution mixture. The internal standard solution mixture
consisted of deuterated aromatics, specifically benzene-d6 40%
(w ⁄ w), ethylbenzene-d10 40% (w ⁄w), and naphthalene-d8 20%
(w ⁄ w) and prepared at a dilution of (1:500) in carbon disulfide
(CS2). A Hewlett Packard 6890 series GC with a 5973 series MS
detector was used to analyze all the samples with the following
conditions: column, HP-1 Methyl Siloxane 60 m length · 250 lm
bore · 0.25 lm film thickness; flow rate, 1.6 mL ⁄min; carrier gas:
Helium; injection volume: 1 lL; split ratio, 20:1; temperature pro-
gramming: 35�C 4 min, 6�C ⁄ min to 260�C, hold 12 min; total run
time: 53.50 min.

The data were preprocessed before being introduced into the
multivariate procedures. The peak areas for the 15 peaks in the 92
chromatograms were determined by using the RTE integrator
within the HP Chemstation software.

The area of each peak was scaled relative to the area of the
ethylbenzene-d10 peak with a retention time of 11.54 minutes in all
the chromatograms. The scaled areas of the peaks were assembled
into a 15 column by 92 row data matrix for use with PCA, CVA,
OCVA, and LDA.

Statistical Methods

The normalized integration results from the gas chromatographic
analysis were first arranged into an n · p data matrix (X) for
analysis:

X ¼

X11 :: X1j :: X1p

: : :
Xi1 :: Xij :: Xip

: : :
Xn1 :: Xnj :: Xnp

2
66664

3
77775

where n = 92 is the number of chromatograms and p = 15 is the
number of peaks in the chromatogram. Each Xij represents an area
under peak j in chromatogram i. The symbol Xi designates row i
of X and is a vector of data representing chromatogram i. The
average of all row vectors in X is the average vector X. Multivari-
ate statistical methods were used to transform the data set (X) into
a new data set (Z) that contains the optimal variables from the ori-
ginal data set that accounts for a majority of the variation. These

TABLE 1—The m ⁄ z values of the fifteen peaks integrated in each
chromatogram of gasoline plus a deuterated internal standard.

Ret. Time
(€0.05 min) Chemical Compound ⁄ Class

11.54* Ethylbenzene, d10*
11.70 Ethylbenzene
11.98 m- & p-xylene
12.68 o-xylene
14.62 Propylbenzene
14.85 m-ethyltoluene
14.91 C3 alkyl benzene, unidentified
15.08 C3 alkyl benzene, unidentified
15.36 o-ethyltoluene
15.81 1,2,4 trimethylbenzene
16.59 1,2,3 trimethylbenzene
17.40 C4 alkyl benzene, unidentified
17.48 C4 alkyl benzene, unidentified
17.59 C4 alkyl benzene, unidentified
17.66 C4 alkyl benzene, unidentified
18.38 C4 alkyl benzene, unidentified

*Deuterated internal standard.
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optimal variables retain most of the underlying structure of the ori-
ginal data set that may be used to discriminate between different
samples of gasoline. In this study, k = 20 different samples of gaso-
line were analyzed. The raw integration data were processed using
computer programs written using the Mathematica version 5.1 com-
puter algebra system. The Mathematica notebooks developed for
this study are available upon request from the authors. The multi-
variate analysis of data set (X) undertaken in this study were PCA,
CVA, OCVA, and LDA.

PCA is a multivariate procedure that is used to reduce the
dimensionality of a data set (X) to a new data set (ZPC) of
‘‘derived variables’’ (13,18). The derived variables are linear combi-
nations of the original variables

Zij ¼
Xp

l¼1

ailXil

or in matrix form

ZPC ¼ XAT
PC

where the superscript T is the transpose of APC. The subscript PC
will now be dropped for typographical convenience. This transfor-
mation simply rotates the coordinate axes in feature space and the
above equation is a transformation of the data (X) into the basis of
principal components. The entire set of derived variables is equiva-
lent to the original data (X). The new data set (Z), however, orders
the variables (columns) according to the amount of variance of the
data set they contain, from highest to lowest. If the first few vari-
ables in Z contain a majority of the variance, then the remaining
variables can be deleted with a minimum loss of information con-
tained in the data. The dimensionality of the data set is then effec-
tively reduced to include only those variables that adequately
represent the data. As a note of caution, while the information con-
tained in the low variance variables of Z that are removed may not
be important to the overall structure of the data, they may contain
the derived features needed to discriminate between different sam-
ples (18). This issue is discussed further in the Results and Discus-
sion section below.

The matrix A contains the p principal components as rows and
was computed by diagonalizing the p · p covariance matrix (S)
of X

SAT ¼ ATK

Standard eigenvector and eigenvalue routines were used to deter-
mine the PCs A (eigenvectors of S) and their variances K (eigenva-
lues of S) (19). The PCs were all normalized to unity. The
maximum likelihood covariance matrix, S used in this study was
computed as

S ¼ 1
n� 1

Xn

i¼1

ðXi � XÞ � ðXj � XÞT

where � is the Kronecker (direct) product of vectors (13).
The ratio of eigenvalues

ki

�Xp

j¼1

kj K ¼ diagðk1; k2; . . . ; kpÞ

gives the proportion of variance explained by the ith principal
component and is useful in selecting the number of principal com-
ponents required to adequately represent the data. No prior

grouping of sample chromatograms was assumed in the PCA
computations.

CVA (also called Fisher linear discriminant analysis) seeks to
characterize the ratio of between group variance (B) to within
group variance (W) (13,20). Unlike PCA, CVA requires that at
least some of the sample groups are known a priori in order to
characterize the variations in the data set. These a priori labeled
samples act as a training set in order to compute the canonical
variates (CVs). Geometrically, the CVs define axes onto which
the data are projected that best separate the samples into discrete
clusters (13,20). In p-dimensional space, p CVs can be computed.
However, CVA can be used to reduce the dimensionality of the
data by retaining only the first few CVs. Additionally, like PCA,
CVA can be formulated as an eigenvector-eigenvalue problem
with the magnitude of the eigenvalues providing a guide as to
the number of CVs to be retained. The CVs, ACV, and their
eigenvalues KCV were computed by diagonalizing the matrix
W)1B with

B ¼
Xk

i¼1

niðXi � XÞ � ðXi � XÞT

and

W ¼
Xk

i¼1

Xni

j¼1

ðXij � XiÞ � ðXij � XiÞT

The subscript CV will now be dropped for typographical conve-
nience. A standard inversion method was used to invert nonsingular
W (19). Xij represents the jth chromatogram in the ith sample and
Xi is the average of all the chromatograms in the ith sample. Note
that there are ni replicate chromatograms in sample i. Because the
eigenproblem for CVA

W�1BAT ¼ ATK

is not symmetric, its eigenvectors are not guaranteed to be orthogo-
nal. Thus unlike in PCA the CVs are not necessarily at right angles
to each other (13). However, the eigenvectors in A are normalized
to unity. The data is then transformed to the basis of (retained)
CVs as

Z ¼ XAT

OCVA seeks to find axes in p-dimensional feature space
(defined by the data set) which maximize the ratio of between-
group to within-group variance as in CVA (21). OCVA, however,
has the additional restriction that the axes it finds are orthogonal
to each other as in PCA. Because of the added constraint the
OCVA procedure cannot be formulated as an eigenproblem and
was a bit more difficult to program. As prescribed by Krzanowski
(21), we first form the equation of weighted variables, V for the
ith OCV

V ¼ eT
i Bei=eT

i Wei

where ei

eT
i ¼ ðy1; y2; . . . ; ypÞi

is a vector of variables to be determined. Next the Lagrangian

Lðei; kÞ ¼ V �
Xi

j¼1

kjðeT
j ej � 1Þ
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is formed and maximized to determine the values of the variables
in ei and Lagrange multipliers ki. A standard maximization routine
is used to perform this optimization task (19). The resulting OCVs,
ei are collected (as rows) into the matrix AOCV. The subscript OCV
will now be dropped for typographical convenience. The above
procedure was repeated for the desired number of OCVs. A total
of p OCVs can be computed; however, like the latter multivariate
methods described above, the goal is to reduce the dimensionality
of the data so that it can be visualized in Cartesian plots. Like
PCA and CVA the OCVs can be ordered in increasing importance.
The Lagrange multipliers serve this task in OCVA; however, they
no longer represent variances as in PCA (21). Typically, only the
top 2, 3, or 4 OCVs are retained. The data in X can then be trans-
formed to the basis of (retained) OCVs as

Z ¼ XAT

The samples in the data contained in the original data matrix X
or any of the derived data matrices Z can be numerically discrimi-
nated between using LDA (also called classification analysis) (13).
This decision model uses a distance function to find the mean vec-
tor Yi (average chromatogram of sample i contained in matrix X
or any of the derived data matrices Z) that is closest to the ‘‘test’’
chromatogram Yj (original or derived). The distance metric used is
of the Mahalanobis type

D2ðYjÞ ¼ ðYj � YiÞTS�1
pl ðYj � YiÞ

which employs a pooled covariance matrix for all the samples

Spl ¼
1

n� k

Xk

i¼1

ðni � 1ÞSi

Si is the covariance matrix for sample i. No singular Spl were
encountered in this study. The actual discriminant function con-
structed for sample i is given as

LiðYjÞ ¼ Y
T
i S�1

pl Yj �
1
2

Y
T
i S�1

pl Yi

Thus LDA is essentially a method to ‘‘train’’ a set of linear func-
tions, Li to be able to recognize which data group a particular pat-
tern came from (i.e., a ‘‘supervised’’ machine learning technique).
For this study, the data groups are the different samples of gasoline
and the patterns are the areas of the chosen fifteen peaks in the gas
chromatograms. A total of k = 20 discriminant functions were con-
structed, one for each sample of gasoline. Chromatogram j is then
assigned to sample i according to the decision rule

arg max
i

LiðYjÞ

i.e., assign Yj to sample i whose discriminant function yields
the largest numerical value (13). In other words, this decision
rule means: ‘‘the chromatogram Yj is most similar to the set of
chromatograms from gasoline sample i.’’

The ability of discriminant functions to accurately predict the
sample identity of a pattern which they have not been trained with,
is called classification error analysis (22). This is a very important
topic whenever statistical pattern recognition techniques are applied
to evidence in forensic science. The reason is because discriminant
functions are necessarily trained on a finite (probably small) set of
data. The functions, however, will be used to classify or identify a
piece of evidence (data) that they have not been trained with. Thus,

rigorously derived accurate estimates for error rates of computed
sets of discriminant functions are critical in forensic science appli-
cations. For this study, we estimate the error rates of the k discrimi-
nant functions in three different ways. We actually compute
estimates of the ‘‘correct classification rate’’ which is one minus
the error rate and is reported as a percentage.

The first estimate used is the ‘‘apparent’’ correct classification
rate computed by determining the number of chromatograms
assigned to their correct sample (by the discriminant functions)
divided by the total number of chromatograms. This performance
estimate is known to be biased and tends to yield an overly opti-
mistic correct classification rate (13).

The second estimate is the overall ‘‘hold-one-out’’ correct classi-
fication rate (14,20). This is computed by first recalculating the
linear discriminant functions omitting a single chromatogram
from the data set. Thus, the recalculated discriminant functions are
not trained to identify the held out chromatogram. This omitted
chromatogram is then classified with the recalculated linear discri-
minant functions and the process is repeated sequentially for each
chromatogram in the data set. The number of correctly classified
‘‘held-out’’ chromatograms is divided by the total number of
chromatograms in the entire data set (92 in this study) to yield the
overall hold-one-out correct classification rate.

Finally the ‘‘jackknife’’ correct classification rate is computed.
‘‘Jackknifing’’ a data set is the process of replicating a data set
composed of n observation vectors, n-times. Each replicate data
set, however, contains all but one of the original data vectors (23).
Thus the jackknife method employs the hold-one-out process. The
n ‘‘jackknifed’’ data sets are then used to recalculate a statistic on
that data set in the absence of the deleted data vector, producing a
set of estimates of the statistic. The set can then be used to produce
an average and standard deviation for the statistic (23). The jack-
knife correct classification rate is mathematically the least biased
estimation of the discrimination functions’ classification perfor-
mance (13).

Here we compute the jackknife correct classification rate by first
computing all the samples’ hold-one-out correct classification rates
and recording them in a ‘‘jackknife cross-validation table.’’ Next
the average and standard deviation of the samples’ hold-one-out
correct classification rates is found yielding the jackknife correct
classification rate (14,20,23). The difference between the jackknife
correct classification rates for samples containing three replicates
and seven replicates was analyzed using the Student’s t-test (24).

Results and Discussion

PCA

PCA is typically used to reduce the number of dimensions in
multivariate data. The dimensions that were excluded were those
describing the least amount of variance. The method minimizes the
dimensionality of the data by discounting variables with minimal
contributions to the overall spread of the data. As a result, the more
highly correlated the data variables are, the fewer high variance
PCs there will be, and thus, the lower the dimension of the sub-
space in which most of the structure of the data resides (18). If the
number of dimensions can be reduced to two or three, then the data
can be graphically visualized in Cartesian plots. The scatter of data
points in these graphical plots may cluster into groups; however, it
is important to note that PCA is not itself a clustering technique.
PCA in this application simply projects the compressed data into a
subspace where clusters of data, if present in that subspace, can be
visualized.
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The variance associated with the 15 principal components is
given in Table 2. Here, one can see that principal components 1
through 6 accounts for 99.9% of the variance structure in the data.
Figure 1 shows the samples plotted against the first two principal
components (97.4% of variance accounted for) and Fig. 2 shows
the samples plotted against the first three principal components
(98.7% of variance accounted for). Finally, while the jackknife cor-
rect classification rates between the 2D and 3D PCA data for the
samples with seven replicates are not equivalent at the 95% level,
they are equivalent at the 95% level for the samples with three
replicates. Overall, some clustering of points was noted but well-
formed (low intra-cluster spread) well-separated (high inter-cluster
spread) was not readily apparent.

2D PCA

Figure 1 shows the projection of the data into the space of the
first two principal components. While the first two principal com-
ponents account for roughly 97.4% of the variance in the data,
the clustering of some of the data points into well-defined groups
containing only data from the same sample (especially in the first
quadrant), is difficult to discern. 2D PCA performed reasonably
well in confirming a cluster structure in the data considering how
closely the samples were projected into the subspace.

Table 3 shows the jackknife cross-validation table for classifica-
tion of each 2D principal component reduced gas chromatogram
using LDA. The overall hold-one-out correct classification rate was
80% (82% apparent correct classification rate). The jackknife cor-
rect classification rate was 83 € 24%. For the samples with seven
replicates the jackknife correct classification rate was 75 € 26%.
For the samples with three replicates the jackknife correct classifi-
cation rate was 89 € 22%. These averages are statistically different
at the 95% level of significance using the Student’s t-distribution.
However, such large standard deviations are not surprising consid-
ering the small number of replicate gas chromatograms generated
for each sample.

As can be seen in Fig. 1, samples 4, 8, 15, 16, 19, and 20 were
the most intermingled. Samples 8 and 19 had the worst hold-one-
out correct classification rates (29% and 33% respectively, cf.
Table 3) where sample 8 is difficult to distinguish from samples
15, 16, and 20 while replicates from sample 19 are close to the
tightly clustered samples of 4 and 20.

3D PCA

Table 4 shows the jackknife cross-validation classification for
the data projected into the space of the first three PCs. Clearly, the
addition of the extra dimension provided by PC3 (1.3% of the var-
iance) markedly increases the correct classification rates, now 88%
overall hold-one-out correct classification (93% apparent correct
classification rate) up from 80% in 2D PCA. Note, however, how
tightly packed the data are about PC3 in Fig. 2. In fact, a 100%
jackknife correct classification rate was not achieved until the PCA
data reached 10 dimensions. Thus, for this study, we observed that
complete discrimination between the samples is very subtle.

The jackknife correct classification rate was 88 € 21% while
with the seven replicate samples it was 87 € 14%, and with the
three replicate samples it was 89 € 30%. These averages are statis-
tically distinct at the 95% level of confidence. We can interpret this
to mean that in order to obtain slightly more reliable classification
rates, not only should one use the same number of replicates in
each sample, but one should use as many replicates in the samples
as possible.

Higher Dimensional PCA

Finally, we note that PCA required 10 dimensions order to
yield a 100% jackknife correct classification rate. We pay parti-
cular note to this result because PCA is often used as a data
preprocessing technique before some sort of discrimination proce-
dure is performed. Dimensional reduction for our data set actu-
ally hindered discrimination in that we needed such a high
dimensional feature space in order to obtain a perfect classifica-
tion rate. In fact, we observed that as we added dimensions to
the derived data set (i.e., retained more PCs) the jackknife cor-
rect classification rate was slow to converge to 100%. Here we
note that using PCA first to reduce the dimension of data sets
before processing with a discrimination algorithm may inadver-
tently remove necessary discriminating power. We recommend
that, if possible, one should compare the jackknife correct classi-
fication rate for a discrimination method by both preprocessing
and not preprocessing the raw data set with PCA. This will help
to indicate if higher dimensions of the data, while low in var-
iance, will aid in discrimination between different samples.
Below we find that this is in fact the case with the data set in
this study. CVA and OCVA have much better discrimination
power at lower dimension than PCA when used on the raw data.

TABLE 2—The fifteen principal components and corresponding
eigenvalues ordered by their fractional variance.

Principal
Component
Number Eigenvalue

Fractional
Variance (%)

Cumulative
Variance (%)

1 0.2102970 88.9560 88.956
2 0.0198672 8.4039 97.360
3 0.0031579 1.3358 98.696
4 0.0018320 0.7749 99.471
5 0.0005960 0.2521 99.723
6 0.0003730 0.1578 99.881
7 0.0001080 0.0457 99.926
8 0.0000743 0.0314 99.958
9 0.0000396 0.0168 99.974

10 0.0000306 0.0129 99.987
11 0.0000103 0.0044 99.992
12 0.0000078 0.0033 99.995
13 0.0000063 0.0027 99.998
14 0.0000032 0.0014 99.999
15 0.0000024 0.0010 100.000

FIG. 1—Chromatogram data projected into the space of the first two
principal components (2D PCA plot).
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Thus preprocessing our raw data with PCA in order to reduce
its dimension, before processing it with CVA and OCVA
decreased the jackknife correct classification rates for these
methods.

CVA

CVA, like PCA, is used to reduce the number of dimensions in
multivariate data by utilizing linear combinations of functions.
CVA’s strength as a method is its ability to discriminate between
groups in data. The scatter of data points in these graphical plots
try to maximize the difference between groups by exploiting the
inter- and intra-group variance in determining clustering. It is
important to note that CVA is a clustering technique given that the
groups are known a priori in a training sense. However, CVA has
an additional property that it searches for planes on which to pro-
ject the data which optimally separate it into groups with minimal
information loss. CVA has the weaker property as compared to

PCA or OCVA of not utilizing orthogonal Cartesian planes. As
with PCA, if the number of dimensions can be reduced to two or
three, then the data can be graphically visualized in Cartesian
plots.

The eigenvalues associated with the 15 CVs are given in Table 5.
Plots of the data in both 2D and 3D CV space revealed well-
formed low intra-cluster spread and well-separated high inter-cluster
spread that could be easily identified in two or three dimensions. In
general, clustering of points was noted in 2D; however, only by
adding the third dimension to the plot did the latter characteristics
become readily apparent.

2D CVA

Figure 3 shows the projection of the data into the space of the
first two CVs. In general, the majority of the data points separated
into clear packed clusters, while a few of the groups showed some
overlapping.

FIG. 2—Chromatogram data projected into the space of the first three principal components (3D PCA plot).

TABLE 3—LDA jackknife cross-validation table for 2D PCA.

Sample
ID

Number of Replicates
in Sample

Number of Misidentified
Replicates in Sample

Incorrectly Predicted Sample IDs
of Misidentified Replicates

Sample ‘‘Hold-One-Out’’ Correct
Classification Rates (%)

1 7 3 5, 7, 18 57
2 7 1 10 86
3 7 0 None 100
4 7 0 None 100
5 7 3 9, 14 · 2 57
6 7 0 None 100
7 7 2 12, 17 71
8 7 5 15, 16 · 2, 20 · 2 29
9 3 0 None 100

10 3 1 2 67
11 3 0 None 100
12 3 0 None 100
13 3 0 None 100
14 3 0 None 100
15 3 0 None 100
16 3 0 None 100
17 3 0 None 100
18 3 0 None 100
19 3 2 4, 20 33
20 3 1 8 67

Gasoline sample numbers shown in boldface. The jackknife correct classification rate was 83 € 24%.
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Table 6 shows the jackknife cross-validation table for classifica-
tion of each 2D CV reduced gas chromatogram using LDA. The
overall hold-one-out correct classification rate was 93% (97%
apparent correct classification rate). The jackknife correct classifica-
tion rate was 92 € 18%. For the samples with seven replicates, the
jackknife correct classification rate was 96 € 10%. For the samples
with three replicates, the jackknife correct classification rate was
89 € 22%. These averages are statistically distinct at the 95% level
of confidence.

From Fig. 3, one can notice that groups 9 and 6 were quite inter-
mingled. Table 6 shows that the LDA classification algorithm con-
fused these groups with one another which is confirmed by these
samples’ individual hold-one-out correct classification rates of 71%
and 33% respectively (cf. Table 6). There was also slight overlap-
ping noted between groups 15 and 17 as well as groups 19 and 20
as can be seen in Fig. 3 and Table 6.

3D CVA

The jackknife classification rate (and thus overall hold-one-out
and apparent correct classification rates) for the data projected into

the subspace of the first three CVs was 100% (thus no jackknife
cross-validation table is given). Figure 4 shows the plot of this data
in the space of the first three CV dimensions. While it may appear
that there is some overlap between groups 12, 6, 13, 19 and groups
10, 7 and groups 9, 5, by viewing the data down each of the coor-
dinate axes this issue can be resolved. These groups of gasoline
actually form distinct clusters in 3D CV space. Alternative view
points of Fig. 4 illustrating the fact that all twenty groups of gaso-
line form distinct clusters are available from the authors upon
request.

For completeness we note here the angles between the (non-
orthogonal) CV axes are 92� (CV1, CV2), 71� (CV1, CV3), and 69�
(CV2, CV3). We computed the angle h between each pair of nor-
malized CV axes using the scalar (dot) product:

h ¼ arccos½CVi � CVj�

Note that they are all displayed as 90� in Fig. 4. This practice is
standard in the statistical literature because the distortion is gener-
ally assumed to be small (13).

TABLE 4—LDA jackknife cross-validation table for 3D PCA.

Sample
ID

Number of Replicates
in Sample

Number of Misidentified
Replicates in Sample

Incorrectly Predicted Sample IDs
of Misidentified Replicates

Sample ‘‘Hold-One-Out’’
Correct Classification Rates (%)

1 7 2 5, 7 71
2 7 0 None 100
3 7 0 None 100
4 7 0 None 100
5 7 2 1 · 2 71
6 7 0 None 100
7 7 1 17 86
8 7 2 3 · 2 71
9 3 0 None 100

10 3 0 None 100
11 3 0 None 100
12 3 0 None 100
13 3 0 None 100
14 3 0 None 100
15 3 1 19 66
16 3 0 None 100
17 3 0 None 100
18 3 0 None 100
19 3 3 15 · 2, 20 0
20 3 0 None 100

Gasoline sample numbers shown in boldface. The jackknife correct classification rate was 88 € 21%.

TABLE 5—The fifteen eigenvalues associated with the
fifteen CVs and ordered by their magnitude.

Canonical Variate Number Eigenvalue

1 278.3
2 201.1
3 109.5
4 79.1
5 54.7
6 35.0
7 27.6
8 13.2
9 10.0

10 3.2
11 1.6
12 1.1
13 0.7
14 0.3
15 0.1 FIG. 3—Chromatogram data projected into the space of the first two CVs

(2D CVA plot).
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OCVA

OCVA, like CVA, is used to reduce the number of dimensions
in multivariate data by utilizing combinations of linear functions
that search for planes that optimally separate the data into groups.
The method projects the data into planes that maximize the differ-
ences in groups by exploiting the inter and intra-group variance.
OCVA, however, has the stronger property in that the OCV
projection planes are orthogonal. The projection planes are not
necessarily orthogonal in CVA. It is important to note that OCVA
is a clustering technique, like CVA, given that the groups are
known a priori.

OCVA can also be used to reduce the number of dimensions
in multivariate data. The method does this by generating a set
of derived variables which maximize the ratio of between group

to within group variance. Derived variables corresponding to lar-
ger between group to within group ratios have larger Lagrange
multipliers. Thus by retaining only those derived variables with
the largest Lagrange multipliers we obtain a data set reflective
of the widest possible inter-group separation and smallest intra-
group separation. If only two or three OCVs are kept then the
new data sets can be plotted and the clusters (if any) can be
visualized.

The Lagrange multipliers associated with the fifteen orthogonal
CVs are given in Table 7. Like CVA, the plots of the data in 2D
and 3D OCV space revealed well formed low intra-cluster spread
and well separated high inter-cluster spread that could be easily
identified in two or three dimensions.

2D OCVA

In the space of the first two OCVs (cf. Fig. 5) the scatter of data
points appears to be nearly identical to that of the 2D scatter of

TABLE 6—LDA jackknife cross-validation table for 2D CVA and OCVA*.

Sample
ID

Number of Replicates
in Sample

Number of Misidentified
Replicates in Sample

Incorrectly Predicted Sample IDs
of Misidentified Replicates

Sample ‘‘Hold-One-Out’’
Correct Classification Rates (%)

1 7 0 None 100
2 7 0 None 100
3 7 0 None 100
4 7 0 None 100
5 7 0 None 100
6 7 2 9 · 2 71
7 7 0 None 100
8 7 0 None 100
9 3 2 6 · 2 33

10 3 0 None 100
11 3 0 None 100
12 3 0 None 100
13 3 0 None 100
14 3 0 None 100
15 3 0 None 100
16 3 0 None 100
17 3 1 15 66
18 3 0 None 100
19 3 0 None 100
20 3 1 19 66

Gasoline sample numbers shown in boldface. The jackknife correct classification rate for both CVA and OCVA was 92 € 21%.
*The jackknife cross-validation tables for CVA and OCVA were identical and thus only one table is given.

FIG. 4—Chromatogram data projected into the space of the first three
CVs (3D CVA plot).

TABLE 7—The fifteen Lagrange multipliers
associated with the fifteen orthogonal CVs and

ordered by their magnitude.

Orthogonal Canonical
Variate Number

Lagrange
Multiplier

1 278.3
2 201.2
3 145.4
4 132.3
5 95.2
6 86.4
7 73.1
8 65.5
9 59.2

10 47.5
11 31.2
12 30.6
13 20.7
14 20.6
15 17.1
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data points of CVA. The distortion of the 2D CVA plot as com-
pared to the OCVA was not severe since the angles of the first two
CVs were only a few degrees from being a right angle (92�). The
axes of OCVA are always at 90� to one another. Thus it is not sur-
prising that the jackknife cross-validation classification analysis for
2D OCVA, was identical to 2D CVA in this study (cf. Table 6).

3D OCVA

The graphical results for 3D OCVA are shown in Fig. 6. The
spatial distribution of the data points differs to some degree from
that obtained by 3D CVA. This makes sense in light of the fact
that CVA seeks projections of the data into a subspace which best
displays the separation of groups in a data set while OCVA has the
added property of keeping the coordinate system of the data ortho-
gonal. Therefore, it can be expected that there is some distortion
between Figs. 4 and 6.

By viewing Fig. 6 along each of its coordinate axes it becomes
apparent that some of the samples of gasoline are quite close and

not entirely linearly separable in 3D OCV space. Alternative view-
points of Fig. 6 are available from the authors upon request.

The jackknife correct classification rate, however, is nearly per-
fect (and thus no jackknife cross-validation table is given), with the
exception being a replicate of group 17 is misclassified as group
15. A 100% jackknife correct classification rate for the samples in
4D OCV space was found.

Conclusion

The intention of this study was to differentiate casework liquid
gasoline samples by utilizing multivariate procedures from data
generated by the GC-MS. A supervised learning approach was
undertaken to achieve this goal. In other words, the procedures
were tested knowing a priori the correct group assignments for the
gasolines.

This study revealed that the variability in the sample population
was sufficient enough to distinguish all the samples from one
another knowing their groups a priori using PCA, CVA, and
OCVA. It was observed that CVA was able to differentiate all
samples in the population using three dimensions while OCVA
required four dimensions. These results were cross-validated using
the ‘‘jackknife’’ method to confirm the classification functions. By
plotting the CVA and OCVA data in two and three dimensions,
clearly defined and easily interpretable clusters were evident in the
sample population.

PCA required at least 10 dimensions of data in order to predict
the correct groupings. It was observed that by plotting the PCA
data in two and three dimensions that the samples did not cluster
into well-defined groups when compared with the results obtained
from CVA and OCVA.

Preliminary studies conducted on weathered gasoline samples
showed that group predictions using CVA and OCVA were
applicable to about 75% to 80% weathered by volume. A more
formal and detailed study will be conducted with these weath-
ered samples. The outcome of this initial study served to
develop the multivariate procedures and methods to be adaptable
to planned future studies. It is hoped that future studies in this
area will be developed into practical procedures that possess the
scientific rigor required of a technique applicable to fire debris
casework.

Finally, the authors feel that statistical methods of pattern
recognition must be applied to as many fields of empirical
science as possible. This is especially true in the field of forensic
science, where more and more of the findings of traditional
methods used in trace evidence, firearms, and toolmark analysis
are being thrown out of court because many statistical studies
have not been carried out. When using statistical methods to
make numerical discriminations between data, it is critical to lay
out all of the details of these methods if they are not in common
use in the particular scientific community the study is directed at.
Thus we presented a detailed discussion of the statistical methods
used for this study. The discussion should not be a barrier to the
common application of these methods in the field for a number
of reasons. They have been in the scientific literature for ten to
almost 100 years (depending on the method), industry has been
widely using them for the last 40 years (i.e., since the availability
of computers), and three of the methods used in this study
(PCA, CVA, and LDA) are implemented in widely available easy
to use statistical analysis software such as spss, Minitab, and sas

(25–27). Lastly, the authors would be happy to share the data set
and Mathematica software written by them for this study, upon
request.

FIG. 5—Chromatogram data projected into the space of the first two
orthogonal CVs (2D OCVA plot).

FIG. 6—Chromatogram data projected into the space of the first three
orthogonal CVs (3D OCVA plot).
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