
CSCI 375 Project #2

Due date: July 9, 2025

How to submit? Email your source code and sample result

In this lab, you will simulate one of the classical synchronization problems to see how the (semi)

critical section problem could be implemented using binary and counting semaphores.

The lab is due in 2 weeks, July 11, 2024.

4 readers and 2 writers characterize 6 processes.

Up to three reader processes can be inside their critical section without any writer process. For the

writer process to go into its critical section, it should check whether any reader or writer process

is in the critical section.

The critical section in this problem is reading the shared data buffer for the reader and updating

the shared data buffer for writer processes. It is up to you to implement any shared data for

readers and writers, but you must specify the following things in your sample output.

• When the reader or writer enters its critical section, it has to report whether there are any

reader(s) or writer(s) other than itself.

• You may print out the data you read or write when implementing an actual buffer. (Optional)

• You must print out “Panic Messages” when the rules behind this semi-critical section problem

are not observed.

You run the random number generator function in your main program to choose a process to

execute. The selected process starts (resumes) execution, and after one instruction, it will be

returned. (You should force each process to run precisely one instruction, then return and wait for

its turn.)

You can implement this using a switch statement in C or C++. Do not use any multi-threading or

mutex feature from a programming language. Each process is one big switch statement and will

be returned after each instruction. You need to keep track of the program counter of each process

to resume at the right place once it is chosen to run by keeping a global counter variable per

process.

Subproject 1: You should implement binary and counting semaphores as studied in the class for

this project.

Subproject 2: You should implement a TestandSet function as studied in the class for this

project.

You should not copy from others or let other students use your code. (I might ask you to

explain your code as well.) Violation to this policy will result in automatic fail.

