
1

Operating Systems:

Lecture 5

Threads & Concurrency

Jinwoo Kim
jwkim@jjay.cuny.edu

Chapter 4: Threads

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Implicit Threading

• Threading Issues

• Operating System Examples

Objectives

• To introduce the notion of a thread

– A fundamental unit of CPU utilization that forms the basis of

multithreaded computer systems

• To discuss the APIs for the Pthreads, Windows, and Java

thread libraries

• To explore several strategies that provide implicit threading

• To examine issues related to multithreaded programming

• To cover operating system support for threads in Windows

and Linux

Motivation

• Most modern applications are multithreaded

• Threads run within application

• Multiple tasks with the application can be implemented
by separate threads

– Update display

– Fetch data

– Spell checking

– Answer a network request

• Process creation is heavy-weight while thread creation
is light-weight

• Can simplify code, increase efficiency

• Kernels are generally multithreaded

Multithreaded Server Architecture

Benefits

• Responsiveness

– may allow continued execution if part of process is blocked,
especially important for user interfaces

• Resource Sharing

– threads share resources of process, easier than shared memory
or message passing

• Economy

– cheaper than process creation

– thread switching incurs lower overhead than context switching

• Scalability

– process can take advantage of multiprocessor architectures

What is Parallel Computing?

• In the simplest sense, parallel computing is the simultaneous
use of multiple compute resources to solve a computational
problem

• Steps

– A problem is broken into discrete parts that can be solved
concurrently

– Each part is further broken down to a series of instructions

– Instructions from each part execute in sequence on each
processor but simultaneously on different processors

– An overall control/coordination mechanism is employed

What is Parallel Computing? (Continued)

• The computational problem should be able to:

– Be broken apart into discrete pieces of work that can be solved
simultaneously

– Execute multiple program instructions at any moment in time

– Be solved in less time with multiple compute resources than with a
single compute resource

• The compute resources might be:

– A single computer with multiple processors

– An arbitrary number of computers connected by a network

– A combination of both

Sequential Computing

Parallel Computing

Shared Memory Architecture

• Shared memory parallel computers vary widely, but generally
have in common the ability for all processors to access all
memory as global address space

• Multiple processors can operate independently but share the
same memory resources

• Changes in a memory location affected by one processor are
visible to all other processors

• The most critical problem to address is that of cache
coherence

Distributed Memory Architecture

• Processors have their own local memory and runs their own
copy of OS

– Memory addresses in one processor do not map to another
processor, so there is no concept of global address space across
all processors

• Like shared memory systems, distributed memory systems
vary widely but share a common characteristic

– Distributed memory systems require a communication network to
connect inter-processor memory

• When a processor needs access to data in another processor,
it is usually the task of the programmer to explicitly define how
and when data is communicated

– Synchronization between tasks is likewise the programmer's
responsibility

Hybrid Architecture

• The large computers in the world today employ both shared
and distributed memory architectures

• The shared memory component is usually a cache coherent
SMP machine

– Processors on a given SMP can address that machine's memory
as global

• The distributed memory component is the networking of
multiple SMPs. SMPs know only about their own memory

– Not the memory on another SMP

– Therefore, network communications are required to move data
from one SMP to another

Accelerator-Based Architecture

• The largest and fastest computers in the world today employ
Hybrid Architecture and Accelerators (GPUs)

– Shared Memory

– Distributed

– Hybrid

History / Timeline

Decade Parallel Hardware Platforms Memory

1980s
Vector supercomputers Shared

Multiprocessors (networked) Distributed

1990s

Cluster supercomputers Distributed

Internet Distributed

Symmetric multiprocessors Shared

2000s
GPUs Shared

Multicore processors Shared

2010s
Hybrid supercomputers/clusters Both

Coprocessors (w. vector units) Shared

Fundamental Concepts in PDC

• Following are the PDC concepts that are pervasive irrespective
of architecture, programming models, and tools

– Asynchrony

– Concurrency

– Locality

– Performance Measurement and Metric

– Synchronization

– Memory Hierarchy

Asynchrony

• Asynchrony is a characteristics of modern computers

– Even though it seems like many operations are atomic, they are
not

– This is true for sequential computers too

• To develop parallel algorithms and applications we must
understand the cause and effect of asynchrony and think about
the mitigation

– The mitigation often results into additional overhead
– Example: Data Race

Concurrency

• Concurrency is a property of an algorithm, it exposes potential
for parallelization

– If concurrency is present in an algorithm then the concurrent
operations can be executed in parallel (simultaneously) by multiple
operation units (CPU’s) if available

– Without concurrency there is no scope for parallelization

• Concurrency can be present in a sequential program

– parallelization takes advantage of concurrency to increase
performance

Locality

• One of the overarching concepts in computing is that of locality
of time, space, and state

• Each computational unit (a CPU in a shared memory machine
or a node in a cluster) may have their own clock and their own
notion of time

• Memory subsystems proactively predict and cache future
memory references based upon recent memory reference
patterns

• A challenge with localized control is the detection and
management of conflict

Performance Measurement & Metric

• No matter what computing artifact (program algorithms,
hardware) that we are designing, studying, and analyzing, we
should be aware of how good the artifact is and strive to make
it better

• Space, time, and energy are the basic commodities to
measure and the metrics for these commodities may differ
based on whether the context is sequential or parallel

– For example in a sequential program run time may be used as a
measure of goodness but in the parallel version of the same
program there is an additional variable, the number of cores, so
the notion of runtime does not capture the goodness

How do We Write Parallel Program: Types of
Parallelism

•Task Parallelism

– Distributing threads across cores, each thread performing unique
operation

– Example: two threads, each performing a unique statistical operation on the
array of elements

– The threads are operating in parallel on separate computing cores, but each is
performing a unique operation

•Data Parallelism

– Distributes subsets of the same data across multiple cores, same
operation on each

– Each core carries out similar operations on its part of the data
– Example: summing the contents of an array of size N

– For a single-core system, one thread would simply sum the elements [0] . . . [N −
1]

– For a dual-core system, however, thread A, running on core 0, could sum the
elements [0] . . . [N/2 − 1] and while thread B, running on core 1, could sum the
elements [N/2] . . . [N − 1]

– So the Two threads would be running in parallel on separate computing cores

Professor S(erial)

Professor S’s Teaching Assistants

Division of work – Data or Task parallelism ???

Division of work – Data or Task parallelism ???

Multicore Programming

• Multicore or multiprocessor systems putting pressure on
programmers, challenges include:

– Dividing activities

– Balance

– Data splitting

– Data dependency

– Testing and debugging

• Concurrency supports more than one task making progress

– Single processor / core, scheduler providing concurrency

• Parallelism implies a system can perform more than one task
simultaneously

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

Single and Multithreaded Processes

Process vs Thread

Process with one thread

Process with two threads

Amdahl’s Law

 Identifies performance gains from adding additional cores to an
application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1
to 2 cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect
on performance gained by adding additional cores

 But does the law consider contemporary multicore systems?

Amdahl’s Law (Continued)

User Threads and Kernel Threads

• User threads - management done by user-level threads library

• Three primary thread libraries:

– POSIX Pthreads

– Windows threads

– Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general-purpose operating systems,
including:

– Windows

– Solaris

– Linux

– Tru64 UNIX

– Mac OS X

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

Many-to-One

• Many user-level threads mapped

to single kernel thread

• One thread blocking causes all to

block

• Multiple threads may not run in

parallel on multicore system

because only one may be in

kernel at a time

• Few systems currently use this

model

• Examples:

– Solaris Green Threads

– GNU Portable Threads

One-to-One

• Each user-level thread maps to

kernel thread

• Creating a user-level thread

creates a kernel thread

• More concurrency than many-

to-one

• Number of threads per process

sometimes restricted due to

overhead

• Examples

– Windows NT and later

– Linux

– Solaris 9 and later

Many-to-Many Model

• Allows many user level

threads to be mapped to

many kernel threads

• Allows the operating system

to create enough kernel

threads

• Solaris prior to version 9

• Windows with the

ThreadFiber package

Two-level Model

• Similar to M:M, except that it

allows a user thread to be

bound to kernel thread

• Examples

– IRIX

– HP-UX

– Tru64 UNIX

– Solaris 8 and earlier

Thread Libraries

• Thread library provides programmer with API for creating and

managing threads

• Two primary ways of implementing

– Library entirely in user space

– Kernel-level library supported by the OS

Pthreads

• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

• Specification, not implementation

• API specifies behavior of the thread library, implementation is

up to development of the library

• Common in UNIX operating systems

– Solaris, Linux, Mac OS X

Pthreads Example

Pthreads Example (Cont.)

Pthreads Code for Joining 10 Threads

Windows Multithreaded C Program

Windows Multithreaded C Program (Cont.)

Java Threads

• Java threads are managed by the JVM

• Typically implemented using the threads model provided
by underlying OS

• Java threads may be created by:

– Extending Thread class

– Implementing the Runnable interface

Java Multithreaded Program

Java Multithreaded Program (Cont.)

Implicit Threading

• Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

• Creation and management of threads done by compilers and
run-time libraries rather than programmers

• Three methods explored

– Thread Pools

– OpenMP

– Grand Central Dispatch

• Other methods include Microsoft Threading Building Blocks
(TBB), java.util.concurrent package

Thread Pools

• Create a number of threads in a pool where they await
work

• Advantages:

– Usually slightly faster to service a request with an existing
thread than create a new thread

– Allows the number of threads in the application(s) to be bound
to the size of the pool

– Separating task to be performed from mechanics of creating
task allows different strategies for running task

– i.e. Tasks could be scheduled to run periodically

• Windows API supports thread pools:

Introduction to OpenMP

• An Application Program Interface (API) that may be used to
explicitly direct multi-threaded, shared memory
parallelism

• Comprised of three primary API components

– Compiler Directives

– Runtime Library Routines

– Environment Variables

• An abbreviation for

– Short version: Open Multi-Processing

– Long version: Open specifications for Multi-Processing via
collaborative work between interested parties from the
hardware and software industry, government and academia

OpenMP is Not

• Meant for distributed memory parallel systems (by itself)

• Necessarily implemented identically by all vendors

• Guaranteed to make the most efficient use of shared memory

• Required to check for data dependencies, data conflicts, race
conditions, or deadlocks

• Required to check for code sequences that cause a program
to be classified as non-conforming

• Meant to cover compiler-generated automatic parallelization
and directives to the compiler to assist such parallelization

• Designed to guarantee that input or output to the same file is
synchronous when executed in parallel

– The programmer is responsible for synchronizing input and output

OpenMP Programming Model

Fork Join Model

Three Components

• The OpenMP API is comprised of three distinct components.

– Compiler Directives

– Runtime Library Routines

– Environment Variables

• The application developer decides how to employ these
components

• Implementations differ in their support of all API components

– For example, an implementation may state that it supports
nested parallelism, but the API makes it clear that may be limited
to a single thread - the master thread. Not exactly what the
developer might expect?

Compiler Directives

• OpenMP compiler directives are used for various purposes

– Spawning a parallel region

– Dividing blocks of code among threads

– Distributing loop iterations between threads

– Serializing sections of code

– Synchronization of work among threads

• Compiler directives have the following syntax:

sentinel directive-name [clause, ...]

– Directive-name is a specific keyword, for example parallel, that
defines and controls the action(s) taken

– Clauses, for example private, can be used to further specify the
behavior

– # pragma omp parallel num_threads(thread_count)

– # pragma omp parallel default(shared) private(beta,pi)

Compile and Run OpenMP programs

• Compile C/C++ codes

– > gcc/g++ -fopenmp name.c -o name

– > icc/icpc -openmp name.c -o name

• Run OpenMP programs

– > export OMP_NUM_THREADS=4 # set number of threads

– > ./name

– > time ./name # run and measure the time.

Runtime Routines

• The OpenMP API includes an ever-growing number of run-
time library routines

• These routines are used for a variety of purposes:

– Setting and querying the number of threads

– Querying a thread's unique identifier (thread ID), a thread's
ancestor's identifier, the thread team size

– Setting and querying the dynamic threads feature

– Querying if in a parallel region, and at what level

– Setting and querying nested parallelism

– Setting, initializing and terminating locks and nested locks

– Querying wall clock time and resolution

Environment Variable

• OpenMP provides several environment variables for
controlling the execution of parallel code at run-time

• These environment variables can be used to control such
things as:

– Setting the number of threads

– Specifying how loop iterations are divided

– Binding threads to processors

– Enabling/disabling nested parallelism; setting the maximum
levels of nested parallelism

– Enabling/disabling dynamic threads

– Setting thread stack size

OpenMP Thread Model

• Program start with one thread(Master)

• Before parallel region

– Multiple threads are created

– Threads have id (0 to p-1)
– master thread id is 0

• At the end of parallel region thread 1 to p-1 join with the
thread 0

• There can be multiple parallel region

OpenMP Code Structure

#include <omp.h>

main ()

{

int var1, var2, var3;

Serial code . . .

Beginning of parallel section. Fork a team of threads. Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)

{

Run-time Library calls .

Other OpenMP directives .

} At the end of a parallel region, there is an implied barrier that forces all threads to wait

until the computation inside the region has been completed.

Resume serial code . . .

}

Pragmas

• Special preprocessor instructions

• Typically added to a system to allow behaviors that aren’t part
of the basic C specification

• Compilers that don’t support the pragmas ignore #pragma

• OpenMP directives have three parts

– #pragma omp, Directive, Optional clause (modifies directive)

Example:

pragma omp parallel num_thread(6)

Directive Clause

Parallel Directive

• Most basic parallel directive

– Creates multiple thread

– Following structured block of code(parallel region) is executed
by the threads parallelly (asynchronously)

• There is an implicit barrier at the end of a parallel region

pragma omp parallel

How Many Threads

• Determined by num_thread clause (more in next slide)

• If num_thread clause is absent, the number of thread is
determined by the value OMP_NUM_THREADS environment
variable

• If the variable is not set by the user, then the number of thread
is system depended (usually equal to the number of cores-
including hyperthreading)

num_thread Clause

• Tells OpenMP runtime systems how many threads to create

• #pragma omp parallel num_thread(8)

– will create seven new thread (total 8 including master)

• #pragma omp parallel num_thread(x)

– x must be an integer expression with the runtime value >=1

– often pass as command line argument

Restriction on Parallel Region

● A parallel region must be a structured block that does not

span multiple routines or code files

● It is illegal to branch (including goto) into or out of a parallel

region

● Only a single IF clause is permitted

● Only a single NUM_THREADS clause is permitted

Runtime Functions

● Following are two most used runtime functions

● int omp_get_num_threads()

returns number of threads in the team

● int omp_get_thread_num()

returns thread id (between 0 to p-1) of thread which called this

function

Hello World Revisited

#include <iostream>

#include <omp.h>

int main()

{

std::cout << “Hello World!\n”;

#pragma omp parallel

{

int thread_count = omp_get__num_threads();

int my_id = omp_get_thread_num();

std::cout << “Hello World from ” << my_id << “ of ” << thread_count

<< std::endl;

}

return 0;

}

Parallel Directive Clauses

#pragma omp parallel [clause ...] newline

num_threads (integer-expression)

private (list)

shared (list)

default (shared | none)

reduction (operator: list)

firstprivate (list)

lastprivate(list)

copying(list)

If (scalar_expression)

and more ……...

defines variable scope

will discuss later

Scope of Variable

● In serial programming, the scope of a variable consists of

those parts of a program in which the variable can be used

● In OpenMP, the scope of a variable refers to the set of

threads that can access the variable in a parallel block

Variable Scope in OpenMP

● A variable that can be accessed by all the threads in the team

has shared scope

● A variable that can only be accessed by a single thread has

private scope

● The default scope for variables declared before a parallel block

is shared and variable declared in the block are private

● The default scope can be changed by default, private and

shared clause

#pragma omp parallel default(shared) private(beta,pi)

Data Scope Clauses

• Private

– A new object of the same type is declared once for each thread
in the team

– All references to the original object are replaced with references
to the new object

– Variables declared PRIVATE should be assumed to be
uninitialized for each thread

• Shared

– The SHARED clause declares variables in its list to be shared
among all threads in the team

– It is the programmer's responsibility to ensure that multiple
threads properly access SHARED variables (such as via
CRITICAL sections)

Default Data Scope Clauses

• The DEFAULT clause allows the user to specify a default
scope for all variables in the lexical extent of any parallel
region

• Using NONE as a default requires that the programmer
explicitly scope all variables

• Only one DEFAULT clause can be specified on a PARALLEL
directive

Data Scope Example

#include <iostream>

#include <omp.h>

int main(int argc, int *argv[]){

int p, total = 0;

std::cout << "Enter the number of threads you want to run: ";

std::cin >> p;

#pragma omp parallel num_threads(p)

{ int x = 0;

int thread_count = omp_get_num_threads();

int my_id = omp_get_thread_num();

x = (my_id + 1) * thread_count;

total = total + x;

std::cout << “Id = ” << my_id << “ x = ” << x << std::endl;

}

std::cout << “Total= ” << total << std::endl;

return 0;

}

Synchronization with CRITICAL Directive

• Private

– The CRITICAL directive specifies a region of code that must be
executed by only one thread at a time

– If a thread is currently executing inside a CRITICAL region and another
thread reaches that CRITICAL region and attempts to execute it, it will
block until the first thread exits that CRITICAL region.

– It is illegal to branch into or out of a CRITICAL block

#pragma omp parallel shared(x)

{

#pragma omp critical

x = x + 1;

} /* end of parallel section */

Synchronization Example

#include <iostream>

#include <omp.h>

int main(int argc, int *argv[]){

int p, total = 0;

std::cout << "Enter the number of threads you want to run: ";

std::cin >> p;

#pragma omp parallel num_threads(p)

{ int x = 0;

int thread_count = omp_get_num_threads();

int my_id = omp_get_thread_num();

x = (my_id+1)*thread_count;

#pragma omp critical

total = total + x;

std::cout << “Id = ” << my_id << “ x = ” << x << std::endl;

}

std::cout << “Total= ” << total << std::endl;

return 0;

}

Divide for-loop for parallel sections

Use pragma parallel for

OpenMP Data Parallel Construct: Parallel Loop

Programming Model – Parallel Loops

Be Careful with Data Dependences

Example

Example

Example

Data race condition

Data race condition (Continued)

Atomic construct

Atomic construct (Continued)

Atomic construct (Continued)

Atomic construct (Continued)

Atomic construct (Continued)

Critical construct

Critical construct (Continued)

Critical construct (Continued)

Reduction construct

Reduction construct (Continued)

Project #2

For this assignment you need to write a parallel program in C++ using OpenMP for vector

addition. Assume A, B, C are three vectors of equal length. The program will add the

corresponding elements of vectors A and B and will store the sum in the corresponding

elements in vector C (in other words C[i] = A[i] + B[i]). Every thread should execute

approximately equal number of loop iterations. The only OpenMP directive you are allowed to

use is:

#pragma omp parallel num_threads(no of threads)

The program should take n and the number of threads to use as command line arguments:

./parallel_vector_addition <n> <threads>

Where n is the length of the vectors and threads is the number of threads to be created.

Pseudocode for Assignment

mystart = myid*n/p; // starting index for the individual thread

myend = mystart+n/p; // ending index for the individual thread

for (i = mystart; i < myend; i++) // each thread computes local sum

do vector addition // and later all local sums combined

Project #2 (Continued)

As an input vector A, initialize its size to 10,000 and elements from 1 to 10,000.

So, A[0] = 1, A[1] = 2, A[2] = 3, … , A[9999] = 10000.

Input vector B will be initialized to the same size with opposite inputs.

So, B[0] = 10000, B[1] = 9999, B[2] = 9998, … , B[9999] = 1

Using above input vectors A and B, create output Vector C which will be computed as

C[i] = A[i] + B[i];

You should check whether your output vector value is 10001 in every C[i].

First, start with 2 threads (each thread adding 5,000 vectors), and then do with 4,and and 8

threads. Remember sometimes your vector size can not be divided equally by number of threads.

You need to slightly modify pseudo code to handle the situation accordingly. (Hint: If you have p

threads, first (p - 1) threads should have equal number of input size and the last thread will take

care of whatever the remainder portion.) Check the running time from each experiment and

compare the result. Report your findings from this project in a separate paragraph.

Your output should show team of treads do evenly distributed work, but big vector size might

cause an issue in output. You can create mini version of original vector in much smaller size of

100 (A[0] = 1, A[1] = 2, A[2] = 3, … , A[99] = 100) and run with 6 threads once and take a snap

shop of your output. And run with original size with 2, 4, and 8 threads to compare running times.

Slightly More Complex Example

Some Unresolved Questions

• How does a computer throw darts?

– By generating random x,y coordinates for where the dart would
land

• Given an (x,y), how can the computer tell if it landed in the
circle

– Make it simple, use the unit circle, and only throw darts at the
upper right quadrant

– Calculate the distance from 0,0
– Just calculate the hypotenuse of the triangle

– If hyp < 1, then the point falls within the unit circle!

0,0

0,1

1,0

x,y

y

x

hyp

Java Algorithm

class Pi
function main

get number of threads from the command line
argument as numThreads

create four objects of class Monte
passing numThreads / 4 to each of their constructors

for each Runnable object
create an object of class Thread and pass the Runnable

to its constructor
start the thread object

end for
wait for 4 threads
sum answer from each of the four Monte objects into result
print result

end function main
end class main

class Monte implements Runnable
has integer numIterations
has double answer

function run
create random number generator
set numInside to 0
loop numIterations times
set x to new random number
set y to new random number
calculate hyp = square root of x^2+y^2
if hyp < 1.0

add 1 to numInside
end if

end loop
set answer to numInside / numIterations

end function run

function constructor(iters)
set numIterations to iters

end function constructor

end class MyRunnable

Java Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

import java.lang.*;

import java.lang.Math;

import java.util.Random;

import java.util.concurrent.ThreadLocalRandom;

public class Pi {

public static void main(String[] iters) {

int numIter = 0;

if (iters.length < 1) {

System.err.println("usage: Pi <iterations>");

System.exit(0);

}

try {

numIter = Integer.parseInt(iters[0]);

} catch (Exception ex) {

System.err.println("Bad argument");

System.exit(1);

}

Runnable[] runnables = new Runnable[4];

Thread[] threads = new Thread[4];

for (int i = 0; i < 4; i++) {

runnables[i] = new Monte(numIter/4);

threads[i] = new Thread(runnables[i]);

threads[i].start();

}

double answer = 0;

try {

for (int i = 0; i < 4; i++) {

threads[i].join();

answer += ((Monte)

runnables[i]).getRatio();

}

} catch (Exception ex) {

System.err.println("Thread interrupted");

System.exit(2);

}

System.out.println("Ratio is: " + answer);

}

}

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

class Monte implements Runnable {

private double ratio;

private int iters;

public void run() {

ratio = findRatio(iters);

}

public Monte(int iterations) {

iters = iterations;

}

public double getRatio() {

return ratio;

}

private double findRatio(int iterations) {

ThreadLocalRandom rand = ThreadLocalRandom.current();

int numIn = 0;

int numOut = 0;

for (int i = 0; i < iterations; i++) {

// get random number from 0 to 1

double x = rand.nextDouble();

double y = rand.nextDouble();

double hyp = Math.sqrt(x*x + y*y);

if (hyp < 1.0) {

numIn++;

} else {

numOut++;

}

}

return ((numIn + 0.0) / (numIn+numOut));

}

}

Threading Issues

• Semantics of fork() and exec() system calls

• Signal handling

– Synchronous and asynchronous

• Thread cancellation of target thread

– Asynchronous or deferred

• Thread-local storage

• Scheduler Activations

Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all
threads?

– Some UNIXes have two versions of fork

• exec() usually works as normal – replace the
running process including all threads

Signal Handling

Signals are used in UNIX systems to notify a process that a
particular event has occurred

A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:
1. default

2. user-defined

Every signal has default handler that kernel runs when handling
signal

User-defined signal handler can override default

For single-threaded, signal delivered to process

Signal Handling (Cont.)

• Where should a signal be delivered for multi-threaded?

– Deliver the signal to the thread to which the signal applies

– Deliver the signal to every thread in the process

– Deliver the signal to certain threads in the process

– Assign a specific thread to receive all signals for the process

Thread Cancellation

• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:

– Asynchronous cancellation terminates the target thread
immediately

– Deferred cancellation allows the target thread to periodically
check if it should be cancelled

• Pthread code to create and cancel a thread:

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains pending
until thread enables it

 Default type is deferred

 Cancellation only occurs when thread reaches cancellation point
– I.e. pthread_testcancel()

– Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through signals

Thread-Local Storage

• Thread-local storage (TLS) allows each thread to have its own
copy of data

• Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

• Different from local variables

– Local variables visible only during single function invocation

– TLS visible across function invocations

• Similar to static data

– TLS is unique to each thread

Scheduler Activations

• Both M:M and Two-level models require
communication to maintain the
appropriate number of kernel threads
allocated to the application

• Typically use an intermediate data
structure between user and kernel
threads – lightweight process (LWP)

– Appears to be a virtual processor on which
process can schedule user thread to run

– Each LWP attached to kernel thread

– How many LWPs to create?

• Scheduler activations provide upcalls - a
communication mechanism from the
kernel to the upcall handler in the thread
library

• This communication allows an application
to maintain the correct number kernel
threads

Operating System Examples

• Windows Threads

• Linux Threads

Windows Threads

• Windows implements the Windows API – primary API for
Win 98, Win NT, Win 2000, Win XP, and Win 7, 8 and 10

• Implements the one-to-one mapping, kernel-level

• Each thread contains

– A thread id

– Register set representing state of processor

– Separate user and kernel stacks for when thread runs in
user mode or kernel mode

– Private data storage area used by run-time libraries and
dynamic link libraries (DLLs)

• The register set, stacks, and private storage area are
known as the context of the thread

Windows Threads (Cont.)

• The primary data structures of a thread include:

– ETHREAD (executive thread block) – includes pointer to process
to which thread belongs and to KTHREAD, in kernel space

– KTHREAD (kernel thread block) – scheduling and synchronization
info, kernel-mode stack, pointer to TEB, in kernel space

– TEB (thread environment block) – thread id, user-mode stack,
thread-local storage, in user space

Windows Threads Data Structures

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of
the parent task (process)

 Flags control behavior

 struct task_struct points to process data structures
(shared or unique)

