
Journal of computer science and technology: JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

A Survey of Non-Volatile Main Memory Technologies:
State-of-the-Arts, Practices, and Future Directions

Hai-kun Liu1,2, Member, CCF/IEEE/ACM, Di Chen1,2, Hai Jin1,2, Fellow, CCF/IEEE, Xiao-fei Liao1,2, Member,
CCF/IEEE/ACM, Binsheng He3, Member, IEEE/ACM, Kan Hu1,2 and Yu Zhang1,2, Member, CCF/IEEE/ACM

1National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System
Laboratory, Cluster and Grid Computing Laboratory, Huazhong University of Science and Technology, Wuhan, 430074,
China
2School of Computing Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
3School of Computing, National University of Singapore, 117418, Singapore

E-mail: {hkliu, chendi, hjin, xfliao}@hust.edu.cn, hebs@comp.nus.edu.sg, {hukan, zhyu}@hust.edu.cn,

Abstract Non-Volatile Main Memories (NVMMs) have recently emerged as promising technologies for future memory

systems. Generally, NVMMs have many desirable properties such as high density, byte-addressability, non-volatility, low

cost, and energy efficiency, at the expense of high write latency, high write power consumption and limited write endurance.

NVMMs have become a competitive alternative of Dynamic Random Access Memory (DRAM), and will fundamentally

change the landscape of memory systems. They bring many research opportunities as well as challenges on system archi-

tectural designs, memory management in operating systems (OSes), and programming models for hybrid memory systems.

In this article, we first revisit the landscape of emerging NVMM technologies, and then survey the state-of-the-art studies

of NVMM technologies. We classify those studies with a taxonomy according to different dimensions such as memory ar-

chitectures, data persistence, performance improvement, energy saving, and wear leveling. Second, to demonstrate the best

practices in building NVMM systems, we introduce our recent work of hybrid memory system designs from the dimensions

of architectures, systems, and applications. At last, we present our vision of future research directions of NVMMs and shed

some light on design challenges and opportunities.

Keywords Non-Volatile Memory, Persistent Memory, Hybrid Memory Systems, Memory Hierarchy

1 Introduction

In-memory computing is becoming increasingly

popular for data-intensive applications in the big data

era. The memory subsystem has an ever-increasing

impact on the functionality and performance of mod-

ern computing systems. Traditional big memory sys-

tems [1, 2] using DRAM are facing severe scalabil-

ity challenges in terms of power and density [3]. Al-

though DRAM scaling is continued from 28nm in 2013

to 10+nm in 2016 [4, 5, 6], the scaling has slowed down

and become more and more difficult. Moreover, recent

studies [7, 8, 9, 10, 11] have showed that DRAM-based

main memory account for about 30%-40% of the total

energy consumption of a physical server.

Emerging Non-Volatile Main Memory (NVMM)

technologies, such as Phase Change Memory (PCM),

Spin-Transfer Torque RAM (STT-RAM), and 3D X-

Point [12] generally offer much higher memory density,

much lower cost-per-bit and standby power consump-

tion than DRAM. The advent of NVMM technologies

has potential to bridge the gap between slow persistent

storage (i.e., disk and SSD) and DRAM, and will funda-

mentally change the landscape of memory and storage

systems.

Table 1 shows different memory features of

Flash SSD, DRAM, PCM, STT-RAM, ReRAM,

and Intel Optane DC Persistent Memory Modules

(DCPMM) [94] including read/write latencies, write en-

Regular Paper

ar
X

iv
:2

01
0.

04
40

6v
1

 [
cs

.D
C

]
 9

 O
ct

 2
02

0

2 J. Comput. Sci. & Technol.

Table 1. Different Features of NVMM Technologies

Memory
Technology

Read Latency
(ns)

Write Latency
(ns)

Write Endurance
(times)

Standby
Power

Flash SSD 25,000 200,000 105 zero
DRAM 80 80 >1016 Fresh power
PCM 50-80 150-1000 108 zero

STT-RAM 6 13 1015 zero
ReRAM 10 50 1011 zero

Intel Optane
DCPMM

169 (Sequential),
305 (Random)

90 108 zero

Table 2. A Classification of State-of-the-art Studies about NVMM Technologies

Memory Architectural Studies
Simulators and Emulators NVMain [13], ZSim [14], HSCC [15], PMEP [16], HME [17], Quartz [18], LEEF [19]
Hybrid Memory

Architectures
Horizontal memory architectures [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
Hierarchical memory architectures [30, 31, 32, 33, 34, 35, 36]
OS-level Hybrid Memory Management

Persistent Memory
Management

Working Memory: [20, 21, 22, 23, 24, 30, 31, 32, 37, 38];
Persistent Memory File System: PMFS [16],BPFS [39], SCMFS [7], SIMFS [40],
Contour [41], Dapper [42], NOVA [43], Orion [44], ZoFS [45];
Persistent Objects: Mnemosyne [46], CDDSs [47], NV-Heap [48], NV-Duet [49],
NVL-C [50], Pangolin [51], TimeStone [52], Pisces [53], Espresso [54]

Performance Improvement
and Energy Saving

Page Migration: [23, 20, 25, 26, 55, 56, 57, 38, 58];
Buffering NVMM Writes: [8, 59, 60, 24];
NVMM Energy Saving: [61, 62, 63, 64, 65];
DRAM Energy Saving: [66, 67, 68, 39, 69]

Write Endurance
Improvement

Write Reduction: [23, 20, 9, 30, 70, 61, 71, 64, 72, 73]
Wear-Leveling: [20, 74, 75, 76]

NVMM Programming Models and Applications
Programming Models

and APIs
Persistent Objects: Mnemosyne [46], CDDSs [47], NV-Heap [48], NV-Duet [49],
NVL-C [50], Pangolin [51], TimeStone [52], Pisces [53], Espresso [54]

Applications using NVMMs
Key-Value Stores [77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87],
Graph Computing [88, 89, 90], Machine Learning [91, 92, 93]

durance, and standby power consumption [8, 46, 47].

Despite various advantages in density and energy con-

sumption, NVMM exhibits about 6 ∼ 30× higher write

latency and about 5 ∼ 10× higher write power con-

sumption than DRAM. Moreover, the write endurance

of NVMM is very limited (about 108 times) while

DRAM is able to endure about 1016 time write opera-

tions [23, 20]. These disadvantages make it hard to be

a direct substitute for DRAM. A more practical way

of using NVMM is hybrid memory architectures, com-

posed of both DRAM and NVMM [20, 30].

In order to fully exploit the advantages of both

DRAM and NVMMs in hybrid memory systems, there

are many open research problems such as performance

improvement, energy saving, cost reduction, wear lev-

eling, and data persistence. To address those problems,

there have been many studies on the design of memory

hierarchy [20, 30, 21, 34], memory management [39, 16,

95], and memory allocation schemes [96, 97, 98]. Those

research efforts lead to innovations in hybrid memory

architecture, operation system (OS), and programming

models. Although academic community and industry

have proposed a substantial amount of work on inte-

grating the emerging NVMMs in the memory hierarchy,

there still remain many challenges to be addressed.

On the other hand, previous studies on NVMM

technologies are mostly based on simulated/emulated

NVMM devices. The promised performance of NVMM

devices may have various deviations compared to real

non-volatile DIMMs. Recently, the announced Intel

Optane DCPMM [94] has finally made NVMM DIMMs

commercially available. The real Intel Optane DCPMM

A Survey of Non-Volatile Main Memory Technologies 3

behaves significantly differently from the promised fea-

tures that are expected by previous studies. For ex-

ample, Intel Optane DCPMMs show 2∼3× higher read

latency than DRAM, while its write latency is even

lower than that of DRAM [99], as shown in Table 1.

The maximal read and write bandwidths for a single

Optane DCPMM DIMM are 6.6GB/s and 2.3GB/s,

respectively, while the gap between read and write

bandwidth of DRAM is much smaller (1.3X). More-

over, the read/write performance are non-monotonic

with increasing number of parallel threads in the sys-

tem [99]. In their experiment, the peak performance is

achieved between one and four threads and then tails

off. Because of these key features of Optane DCPMM

DIMMs, previous studies on persistent memory systems

should be revisited and re-optimized to adapt to the

real NVMM DIMMs.

Contributions. In this article, we first revisit

the state-of-the-art works on hybrid memory architec-

tures, OS-level hybrid memory management, and hy-

brid memory programming models. Table 2 shows a

classification of state-of-the-art studies about NVMM

technologies. We classify these works in a taxonomy ac-

cording to different dimensions including memory archi-

tectures, PM management, performance improvement,

energy saving, wear leveling, programming models, and

applications. We also discuss their similarities and dif-

ferences to highlight the design challenges and oppor-

tunities. Second, to demonstrate the best practices in

building NVMM systems, we present our efforts of hy-

brid memory system designs from the dimensions of

architectures, systems, and applications. At last, we

present our vision of future research directions of using

NVMMs in real application scenarios, and shed some

light on design challenges and opportunities in the re-

search field.

Although there are other surveys about NVMMs,

this survey offers the unique perspective of NVMM and

gives more recent review of this field given the rapid

development of NVMM. In [100], the authors intro-

duce architectural designs of PCM techniques to ad-

dress the problems of limited write endurance, poten-

tial long latency, high energy writes, power dissipation,

and some concerns for memory privacy. In [101], the

authors present a comprehensive survey and review of

PCM device related computer architectures and soft-

ware. Some other interesting surveys such as [102]

focuses on architecturally integrating four NVM tech-

nologies (PCM, MRAM, FeRAM, and ReRAM) into

the existing storage hierarchy, or focuses on the soft-

ware optimizations [103] of using NVMMs for storage

and main memory systems. Our survey is different

from those surveys in three-folds. First, the articles

[100, 101] both put a focus on the PCM system de-

signs from the perspective of computer architecture. In

contrast, our paper mainly focuses on system works of

using hybrid memories from the dimensions of memory

hierarchy, system software, and applications. Second,

our paper contains more reviews of newly-published

journal/conference papers. Particularly, we have pro-

vided more studies on the new announced Intel Optane

DCPMM device. Third, we introduce more our recent

experiences of hybrid memory systems to shed some

light on design challenges and opportunities of future

hybrid memory systems.

The rest of this paper is organized as follows. Sec-

tion 2 describes the existing hybrid memory architec-

tures composed of DRAM and NVMMs. Section 3

presents the challenges and current solutions of data

persistence guarantees in NVMMs. Section4 describes

state-of-the-art works on performance optimization and

energy saving in hybrid memory systems. Section 5 in-

troduces studies of NVMM write endurance. Section 6

presents our efforts and practices of NVMM techniques.

4 J. Comput. Sci. & Technol.

In Section 7, we discuss the future research directions

of NVMMs, and conclude in Section 8.

2 Hybrid Memory Architectures

There have been a lot of studies on hybrid memory

architectures. Generally, there are mainly two kinds of

hybrid memory architectures, i.e., horizontal and hier-

archical [34], as shown in Figure 1.

2.1 Horizontal Hybrid Memory Architectures

A number of DRAM/NVMM hybrid memory sys-

tems [20, 22, 23] manage DRAM and NVMM in a flat

(single) memory address space by OSes [22, 24], and

use both of them as main memory. To improve data

access performance, those hybrid memory systems need

to overcome the drawbacks of NVMM by migrating

frequently accessed (hot) NVMM pages to DRAM, as

shown in Figure 1(a). Memory access monitoring mech-

anisms need to be developed to guide the page migra-

tion.

Cache

CPU

DRAM NVMM

Hybrid Memory Controller

Hot page

migration

Storage (HDD/SSD)

Main Memory

(a) Flat-addressable hybrid

memory architecture

Cache

CPU

DRAM cache

NVMM

Storage (HDD/SSD)

Main Memory

(b) Hierarchical hybrid memory

architecture

Fig.1. Horizontal and hierarchical hybrid memory architectures

Memory access monitoring. Zhang et al. [22] use a

multi-queue algorithm to classify the hotness of pages,

and place hot pages and cold pages in DRAM and

NVMM, respectively. Park et al. [24] also advocate

a horizontal hybrid memory architectures to manage

DRAM and NVMM. Moreover, they propose three op-

timization strategies to reduce energy consumption of

hybrid memory system. They monitor memory data in

a very fine granularity of a DRAM row, and periodically

check the access counter of each DRAM row. Accord-

ing to counters, the data is written back to NVMM in

order to reduce the energy consumption of DRAM re-

freshing. The data is not cached to DRAM from the

NVMM until it is accessed again. The dirty data is kept

in DRAM as long as possible to reduce the overhead of

data swapping between DRAM and NVMM as well as

the costly writes to NVMM.

Page migration. There have been a number of

page migration algorithms proposed for different op-

timization goals. Soyoon et al. [25] deem that the fre-

quency of NVMM writes is more important than data

access recency in identifying hot pages, and propose a

page replacement algorithm called CLOCK with Dirty

bits and Write Frequency (CLOCK-DWF). For each

NVMM write operation, CLOCK-DWF needs to first

fetch the corresponding page to DRAM and then per-

forms the write in DRAM. This approach may cause

many unnecessary page migrations, and thus introduce

more energy consumption and write-back operations to

NVMM. Rezaet al. [26] take both memory writes and

reads into account to migrate the hot pages that are

beneficial for performance and energy saving, and use

two Least Recently Used (LRU) queues to choose vic-

tim pages in DRAM and NVM individually. Yoon et

al. [21] conduct page migrations based on row buffer

locality, where pages with low row buffer hit rates are

migrated to DRAM while pages with high row buffer

hit rates are still kept in NVMM. Yang et al. [104] pro-

pose a utility model to guide page migrations based on

an utility definition on many factors such as page hot-

ness, memory level parallelism and row buffer locality.

Khouzani et al. [27] consider memory layout of pro-

grams and memory level parallelism to migrate pages

in a hybrid memory system.

A Survey of Non-Volatile Main Memory Technologies 5

Architectural limitations. There are several chal-

lenges to manage NVMM and DRAM in a horizontal

hybrid memory architecture.

First, page-level memory monitoring is costly. On

the one hand, as today’s commodity x86 systems do

not support memory access monitoring at the gran-

ularity of pages, hardware-supported page migration

schemes require significant hardware modification to

monitor memory access statistics [20, 25, 23]. On the

other hand, memory access monitoring at the OS layer

usually cause significant performance overhead. Many

OSes maintain an “accessed” bit in the page table en-

try (PTE) for each page to identify whether this page

is accessed. However, this bit can not truly reflect the

recency and frequency of page accesses. Thus, some

software-based approaches would disable Translation

Lookaside Buffer (TLB) [105] to track each memory ref-

erence. Such page access monitoring mechanisms usu-

ally cause significant performance overhead and even

offset the benefit of page migration in hybrid memory

systems.

Second, page migration is also costly. One time

of page migration may induce many times of page

read/write operations (costly). As a page may only

contain a small fraction of hot data, migration at the

page granularity is relatively costly due to a waste of

memory bandwidth and DRAM capacity.

Third, the hot page detection mechanism may take

a long period of time to allow page to become hot, and

thus degrades the gain of page migration. Moreover,

the hot page prediction may be not accurate for some

irregular memory access patterns, causing unnecessary

page migrations.

2.2 Hierarchical Hybrid Memory Architec-
tures

A number of studies propose to organize DRAM

and NVMM through a hierarchical cache/memory ar-

chitecture [30, 31, 32]. They use DRAM as a cache of

NVMM, as shown in Figure 1(b). The DRAM cache

is invisible to operating systems and applications, and

are managed completely by hardware.

Qureshi [30] et al. propose a hierarchical hybrid

memory system composed of a large size of PCM and

a small size of DRAM. The DRAM cache contains

most recently accessed data to reduce most expen-

sive NVMM accesses, while the large-capacity NVMM

holds most of required data during application execu-

tion to avoid high-latency disk I/O operations. Sim-

ilarly, Mladenov [31] et al. design a hybrid memory

system with a small-capacity DRAM cache and a large-

capacity NVMM, and manage them based on the spa-

tial locality of application data. The DRAM is man-

aged as an on-demand cache and replaced through a

LRU algorithm. Loh et al. [32] manage DRAM in a

granularity of cache lines to improve the efficiency of

DRAM cache, and use a group-connected manner to

map NVMM data to the DRAM cache. They put the

metadata (tag) and data in the same bank row, so that

the data can be quickly accessed for cache hits, and

reduces the performance overhead of tag querying.

In this memory architecture, as the DRAM is orga-

nized as N-way set-associative cache, additional hard-

ware is required to manage the DRAM cache. For ex-

ample, a SRAM storage is needed to store the metadata

(i.e, tag) of data blocks in the DRAM cache, and hard-

ware looking-up circuit is required to find the requested

data in the DRAM cache. Thus, to access data in the

DRAM cache, two memory references are required, one

for accessing the metadata and the other for the actual

data. To accelerate metadata access speed, Qureshi

6 J. Comput. Sci. & Technol.

et al. [30] use a high-speed SRAM to store the meta-

data. Meza et al.[33] reduce hardware cost for tag store

by placing metadata alongside data blocks in the same

DRAM row. They also propose to use a on-chip meta-

data buffer to cache frequently accessed metadata in a

small-size SRAM.

Architectural limitations. Although the hierarchi-

cal hybrid memory architecture usually deliver much

better performance compared with only accessing data

in NVMM solely, it may cause significant performance

degradation when running workloads with poor local-

ity [106]. The reason is that most hardware-managed

hierarchical DRAM/NVMM systems leverage an on-

demand based data fetching policy for simplicity, and

thus the DRAM cache is in the critical data path of

memory hierarchy. If a data block does not hit in the

DRAM cache, it has to be fetched from NVMM to

DRAM regardless of the page hotness. This cache fill-

ing strategy may cause frequent data swapping between

DRAM and NVMM (similar to the cache thrashing

problem). On the other hand, hardware-managed cache

architecture can not fully utilize the DRAM capacity.

Since the DRAM cache is designed to be set-associative,

each NVMM data block is mapped to a fixed set. When

a set is full, it must evict a data block before fetching a

new NVMM data block into the DRAM, even though

other cache sets are empty.

2.3 Architectures of Intel Optane DCPMM

The recently announced Intel Optane DCPMM sup-

ports both horizontal and hierarchical hybrid memory

architectures when it is used combining with DRAM.

There are currently two operating modes for Optane

DCPMM DIMMs: Memory Mode and Application Di-

rect Mode (Persistent) [99]. Each of these modes has

its own advantages for specific use cases.

Memory Mode. In this mode, the DCPMM acts

as a large capacity of main memory. The operating

system (OS) recognizes DCPMM as traditional DRAM

and the persistence feature of DCPMM is disabled. If

traditional DRAM is used combining with DCPMM,

it is hidden from the OS and acts as a caching layer

for DCPMM. Thus, the DCPMM and DRAM are ac-

tually organized in a hierarchical hybrid memory archi-

tecture. The primary benefit of the memory mode is to

provide superior memory capacity to be used on mem-

ory bus lanes. This mode strongly emphasizes building

large storage capacity environments around the mem-

ory space without modifying the upper-level systems and

applications. Recommended use cases would be to ex-

pand the main memory capacity for better infrastruc-

ture scaling, such as parallel computing platforms for

big data applications (mapreduce, graph computing).

Application Direct Mode. In this mode,

DCPMM offers all persistence features to the OS and

applications. OS exposes both DRAM and DCPMM to

the applications as main memory and persistent stor-

age, respectively. The traditional DRAM mixed with

DCPMM still acts as standard DRAM for applications,

while the DCPMM is also assigned to the memory bus

for faster memory access. The DCPMM is used as

one of two types of namespaces: direct access (DAX)

and block storage. The former namespace offers byte-

addressable persistent storage directly accessed by ap-

plications via special APIs. Thus, the DCPMM and

DRAM are logically organized in a horizontal hybrid

memory architecture in this mode. The latter names-

pace presents DCPMM to applications as a block stor-

age device, similar to an SSD, but can be accessed via

a faster memory bus. The Application Direct Mode

strongly emphasizes the advantage of latency reduc-

tion and bandwidth improvement up to 2.7x faster than

NVMe. Recommended use cases would be for large in-

memory databases which are subjected to the demand

A Survey of Non-Volatile Main Memory Technologies 7

of data persistence.

There is also a mixed memory mode combining the

Memory Mode and the Application Direct Mode. A

portion of the capacity of the DCPMM is used for the

Memory Mode operations, and the remaining capacity

of the DCPMM is used for the Application Direct Mode

operations. This mixed memory mode provides a more

flexible approach to manage the hybrid memory system

for different application scenarios.

2.4 Summary

The above two kinds of hybrid memory architec-

tures have their own pros and cons for different sce-

narios. Generally, the hierarchical architecture is more

suitable for applications with good data locality, while

the flat-addressable architecture is more applicable

for latency-insensitive or large-footprint applications.

There is not a conclusion on which architecture is better

than another one. Actually, both hierarchical and flat-

addressable hybrid memory architectures are all sup-

ported by the Intel Optane DCPMM [94]. One limi-

tation of current DCPMM is that, the system needs to

restart after a reconfiguration on the mode of DCPMM.

It could be interesting and flexible for many applica-

tions if a re-configurable hybrid memory system can dy-

namically fit different scenarios in a timely and efficient

manner. This can be an interesting future direction.

3 Persistent Memory Management

Data persistence is an important design aspect of

NVMM. In the following, we first present the techni-

cal challenges of persistent memory (PM) management,

and then introduce the state-of-the-art works on PM

management, including the usage of PM, PM access

modes, fault tolerance mechanisms, and persistent ob-

jects.

3.1 Technical Challenges

In hybrid memory systems, NVMM can act as

main memory when running applications and serve

as persistent storage when applications are completed.

The byte-addressability and non-volatility features of

NVMM eliminate the distinction of memory and exter-

nal storage. However, the data in NVMM should be

reorganized and relocated when the data need to be

persisted in the NVMM.

NVMM Region

Working Memory
Persistent Storage
(write order, atomicity)

Checkpoint

Persistent Object/Data Structure
(transactions)

Fig.2. Data Persistence in NVMM

Figure 2 shows management operations of persis-

tent memory (PM). The NVMM region is a physical

PM device. The NVMM region can be used as working

memory like DRAM, and can also work as persistent

storage like disk. When the program is completed, the

data in the working memory should be flushed into the

persistent storage. Besides, to guarantee high reliabil-

ity, a checkpointing mechanism is widely exploited to

recover system from power failure or system crashes.

Gao et. al. [107] have developed a novel method to

leverage NVMM for real-time checkpointing in hybrid

memory systems.

There are several challenges to manage PM effi-

ciently. First, persistent storage is widely managed

in the form of file systems. As the byte-addressable

NVMMs offer much better random access performance

than traditional block devices, the performance bottle-

neck of PM-based file systems have shifted from the

8 J. Comput. Sci. & Technol.

hardware to the system software stack. It is essential

to shorten the data path in the software stack. Second,

since many CPUs use write-back cache to achieve high

performance for write operations. The last level cache

(LLC) may change the order of data written back to

PM. In case of a power failure or system crash, it may

cause a data inconsistency problem. Thus, to guarantee

data consistency in PM, the order of write operations

and a write atomicity model are required to guaran-

tee data consistency in PM. Third, persistent objects

and data structures are more promising for PM pro-

gramming compared to PM based file systems. Because

they eliminate the complex data structures in file sys-

tems, including i-nodes, metadata, and data. However,

these persistent objects and data structures still face

the challenges of guaranteeing data consistency.

In the following, we will review the works that have

attempted to address those challenges.

3.2 Working Memory

A number of studies [23, 108, 109] use NVMM just

as a replacement of DRAM, without concerning about

the non-volatility property of NVMM. In this use case,

both DRAM and NVM are allocated and reclaimed in

pages. Application data is written back to external

storage when programs complete.

Due to the performance gap between NVMM and

DRAM, memory allocation should take the difference

features of DRAM/NVMM into account. Park et al.

propose to place data in hybrid memory system by ex-

ploiting application virtual memory layout [37]. Both

the DRAM region and the NVM region are managed

by the buddy system separately. Upon a page fault,

the page allocator selects a type of pages for allocation

based on the segment in which they are placed. Pages

in heap and stack segments with intensive write opera-

tions are allocated in DRAM. Pages in other segments

are allocated in NVMM, including read-only text seg-

ment and initialized data segment. Similarly, Wei et

al. [38] also exploit application semantics to direct data

placement in hybrid memory systems. However, they

determine the placement of heap objects based on ob-

ject read/write ratios. The above memory allocation

policies are implemented in OSes and transparent to

programmers. The page placement is also too coarse-

grained to some extent since programmers often allo-

cate small-size objects rather than pages.

3.3 Persistent Memory File System

Some work manages NVMM with traditional file

systems to transparently support legacy applications.

The file system managed NVMM region is called Per-

sistent Memory File System (PMFS) [16]. In PMFS,

applications can access the data in PM via read/write

interfaces as traditional disk-based file systems. The

CPU can also directly access PM via load/store in-

structions based on Direct Access (DAX), which is im-

plemented by the mmap interface, as shown in Figure

3.

Although PM is able to significantly improve appli-

cation performance compared to persistent storage, the

direct access to byte-addressable PM still faces chal-

lenges of data consistency. As an update to a complex

data structure usually contains multiple write opera-

tions on NVMM, a power failure or a system crash may

incur data inconsistency problems if only a portion of

critical data is being written. For example, there are

two write operations to insert an item to a hash table

in PM: one to write the data and the other to write

the metadata. If the metadata is persisted before the

data itself and a power failure occurs, the data and its

metadata become inconsistent.

Current file systems or databases use atomic up-

dates to tackle this problem, where the correlated write

A Survey of Non-Volatile Main Memory Technologies 9

operations are grouped and are performed in a trans-

action manner, namely transaction updating. Also, in

each transaction, multiple writes usually should be con-

strained in order.

Applications

DRAM NVM

mmap PMFS

Load/Store Load/Store Read/Write

Fig.3. PM access mode in hybrid memory systems

3.3.1 Write Order Guarantee

For block-based file systems, the write order to per-

sistent storage are guaranteed through software due

to the huge performance gap between main memory

and disk. The I/O operations are buffered sequentially

in the DRAM and flushed to persistent storage syn-

chronously. However, in hybrid memory systems, cache

lines may be written back to NVMM in an order differ-

ent from the order issued by CPUs. To guarantee the

order of data writes to PM, there are generally three

kinds of approaches in the following.

Hardware Primitives. PM file systems and pro-

gramming frameworks can ensure the write order by ex-

plicitly evicting cache lines to NVMM. Modern CPUs

provide clflush and mfence instructions to achieve this

goal. The clflush instruction is used to evict a cache line

to main memory explicitly. The mfence instruction is

used to guarantee the order of all load and store oper-

ations before it. There have been various index access

methods that optimize the usage of those instructions

such as NV-tree [110, 110] and Bztree [111].

Nevertheless, clflush invalidates a cache line in all

cache levels and leads to performance degradation.

Moreover, clflush only flush a cache line to memory

controller, and does not guarantee the data is actually

written in NVMM. To tackle these problems, Intel has

developed two new enhancement instructions, i.e., clwb

and PCOMMIT [112]. clwb writes back a cache line to

memory controllers without invalidating it in the cache,

and PCOMMIT ensures the data is finally written to

the NVMM chips.

Write-through Cache. Some previous studies

adopt the write-through cache to guarantee data per-

sistence in PM [46, 113]. Write operations can bypass

CPU caches via instructions like movntq. It writes dirty

data directly to memory rather than cache, offering a

simple way to guarantee the write order to NVMM,

without using the complicated barrier and costly flush

operations. However, this strategy leads to significant

performance degradation because write operations are

manipulated in a stream manner. Mnemosyne [46] pro-

vides both the hardware primitives and write through

policies to guarantee the order of writes.

Persistent Cache. Kiln [71] utilizes a non-volatile

cache as the last level cache (LLC) to guarantee data

persistence at the cache level. In the non-volatile LLC,

updates can be completed in-place. Kiln tracks the

dirty lines that need to be updated but still retain

them in the non-volatile cache. As most of the updated

writes have existed in the non-volatile LLC, Kiln im-

proved the system performance by reducing most writes

to NVMM. Besides, the updated data is kept even when

a system failure occur.

3.3.2 Atomic Updating

Atomicity implies each update should be done in a

“all-or-nothing” manner. It can avoid a data structure

being partially updated upon power failures or system

crashes. It is always implemented by a transaction op-

eration. Modern processors can provide 8-byte atomic

updates to DRAM or NVMM. An update to a simple

10 J. Comput. Sci. & Technol.

variable up to 8 bytes can be done in-place. For more

complex data structures, atomic updating operations

become more complicated. There are three technolo-

gies to guarantee complex atomic operations, such as

journaling, shadow updating, and logging structure.

Journaling. Journaling is commonly used in

databases and file systems to guarantee atomic updat-

ing. All updates in a transaction are recorded to a

journal file before the real object is updated. Thus,

journaling always writes the same data twice, one to

the journal file and the other for the actual data. To

diminish the performance overhead due to duplicate

writes, most systems only record metadata in journal

files. For example, Ext4-DAX [114] supports direct ac-

cess to NVMM and uses the journaling mechanism to

achieve metadata atomicity.

Shadow Paging. Shadow paging is a copy-on-

write (COW) mechanism for tree-based file systems

and databases. Each write operation triggers a memory

copy. In the context of file systems, the COW opera-

tion needs to transfer from the root to the leaf in a cas-

cade way. This cascade updating is performance costly.

In BPFS [39], Jeremy et al. propose a short-circuit

shadow paging mechanism for atomic updating. Data

updates are token in-place, including in-place updating

and in-place appending. Fig. 4 shows an example of in-

place appending. The appended data is written to the

end of the file in-place, and then the file size is updated

in-place. In case of a system crash before the updat-

ing of file size, the appended data is invalid. In PMFS

[16], DRAM pages are allocated and reclaimed by vir-

tual memory manager and NVMM pages are managed

by PMFS. Atomic updating is achieved through three

approaches: in-place, logging and COW. In-place up-

dates are used for 8-byte metadata atomic writes and

metadata updates at 64-byte cache line size. Logging

updates are used for more complicated metadata up-

dates. The COW mechanism is used to update file data.

inode files

pointer block

pointer block

data

file size
update

file append

Fig.4. Shadow paging

Logging Structure. Log-structured file systems

are designed to exploit higher performance of sequen-

tial writes to disk. Random writes are converted into se-

quential writes in DRAM buffer, and then are synchro-

nized to disk. However, for byte-addressable NVMM,

the contiguous free memory region required by logging

usually leads to difficulties in memory allocation and

garbage collection [43, 115]. NOVA [43] redesigns the

traditional logging structure file system to improve par-

allelism of data I/O and relax the constrains of con-

tiguous memory allocation. NOVA maintains a log for

each updated i-node rather than a uniform contiguous

log file. Thus, multiple file updates and recovery can be

token in parallel. To mitigate the pressure of contiguous

memory allocation and garbage collection operations in

log-structured file system, NOVA adopts linked list to

store log pages. Besides, to accelerate the access to

persistent files, NOVA maintains a directories tree in

DRAM. Doshi et al. [116] exploits a backend cache con-

troller to write data to PM in a asynchronous way. A

victim DRAM cache is used to store cache lines evicted

from LLC, and then the persistent updates to NVMM

are combined and written to NVMM in a streaming

way. CCDS [47] guarantees data consistency by atomic

updating and maintaining multiple versions of data.

A Survey of Non-Volatile Main Memory Technologies 11

After an atomic update to a critical data structure,

a new version of the data is created. To ensure data

consistent during updating, the most recent version is

recorded and can be accessed by all threads. Upon a

power failure, the most recent version is used for recov-

ery while all in-progress updates are removed.

3.4 Persistent Objects

As PM-based file system interfaces still rely on com-

plex software I/O stack and can introduce multiple

times of data copying, a more attractive way is to store

and access application data structures directly in PM,

namely persistent data structures.

Persistent data structures have been widely ex-

plored object-oriented databases. Berkeley DB [117]

and Stasis [118] can define persistent data structures ex-

plicitly by application programming interfaces (APIs).

However, all these systems store the persistent data

structures in block-based disks. Recently, there have

been a number of persistent object programming frame-

works proposed for NVMM, such as NV-Heaps [48],

NV-Duet [49] and NVL-C [50]. Therefore, program-

mers can definitely allocate NVMM via pmalloc and

DRAM via malloc, and further optimize data placement

in hybrid memory systems according to application se-

mantics.

A major challenge of using persistent objects is to

guarantee referential integrity of objects, i.e., all refer-

ences must point to a valid data. Otherwise, a mem-

ory leak or a memory error occurs because of dangling

pointers or wild pointers. For example, if a pointer

in PM refers to an object in DRAM, upon a power

failure the pointer in PM becomes a dangling pointer.

In a PM system, the memory leak and memory error

are usually more destructive since these exceptions may

be permanent. The referential integrity may occur in

three scenarios: memory allocation, pointer assignment

operations and dellocation. In the following, we use

NV-Heaps as an example to illustrate those scenarios.

NV-Heaps [48] is a lightweight and high-

performance persistent object systems using the emerg-

ing persistent memory. To guarantee data consistency

and durability, NV-Heaps provides a set of easy-to-use

programming primitives, including persistent objects,

specialized pointers, a memory allocator and atomic

sections.

For memory allocation, NV-Heaps are also subject

to wild pointers as conventional programming models.

Once a NV-Heap is not pointed by a valid pointer, its

memory space may be permanent unavailable until the

NVMM device is reset. To prevent memory leak due

to wild pointers, NV-Heaps explores reference counters

for garbage collection. A heap is reclaimed immediately

once no other objects point to it.

For pointer assignment, four new pointer types

may be generated in hybrid memory systems: point-

ers within an NV-Heap (Intra-Heap NV-to-NV point-

ers), pointers from an NV-Head to another NV-Heap

(Inter-Heap NV-to-NV pointers), pointers from volatile

memory to an NV-Heap in NVMM (V-to-NV pointers)

and pointers from an NV-Heap in NVMM to volatile

memory (NV-to-V pointers). To guarantee referential

integrity, NV-to-V pointers and Inter-Heap NV-to-NV

should not be assigned. The NV-to-V pointers are un-

safe when a program ends. For instance, a pointer A in

NVMM points to a data structures B in DRAM. When

the program ends, the memory assigned to B in the

DRAM is reclaimed while the persistent pointer A re-

mains. An error may occur if the pointer A is accessed.

The Inter-Heap NV-to-NV pointers are also dangerous.

For example, a pointer P from NV-Heap M points to

another NV-Heap N. If N becomes unavailable, the

pointer P will point to invalid data. However, the Inter-

Heap NV-to-NV pointers are still needed in some cases

12 J. Comput. Sci. & Technol.

such as doubly-linked lists. Thus, weak pointers are

proposed to implement Inter-Heap NV-to-NV pointers.

Weak NV-to-NV pointers act like normal pointers but

they do not affect the reference counts. When the ref-

erence count becomes zero, all weak pointers should be

atomically released. When an NV-Heap is closed, V-

to-NV pointers may lead to a memory leak. To prevent

this unsafe closing, NV-Heaps are unmapped only when

the program ends.

3.5 Studies on Intel Optane DCPMMs

The emergence of Intel Optane DCPMM arises in-

creasing interests in disclosing its performance fea-

tures and the potential impact on data center appli-

cations [99, 119, 120, 121, 122]. Those experimen-

tal studies are essential to guide the design of hybrid

memory systems and the application programming of

DCPMM. Izraelevitz et al. offer an earliest, schol-

arly, and comprehensive performance measurements of

DCPMM [119]. They explore its capabilities as a main

memory device, as well as byte-addressable persistent

memory exposed to user-space applications. That re-

port enlightens the research community to understand

this non-volatile memory devices, and to guide future

work on hybrid memory systems. They also explore

the performance characteristics of Intel Optane DIMMs

through both microbenchmarks and macrobenchmarks,

and recommend a set of best practices to maximize the

performance of this device [99]. Weiland et al. explore

the performance features of Intel Optane DCPMM and

the impact on high-performance scientific applications

in context of performance, efficiency and usability in

both Memory and App Direct modes [121]. A similar

work is presented by Patil, et. al [120]. They evaluate

the performance characterization of DRAM-NVM hy-

brid memory systems for HPC applications using real

DCPMM. They find that the NVMM-only executions

are slower than DRAM-only and Memory-mode execu-

tions by a minimum of 2%, and a maximum of 6X. Peng

et al. [122] evaluate the impact of using DCPMM on

in-memory graph processing workloads, and the exper-

imental results suggest that the performance and power

efficiency of applications can be optimized by properly

distributing data between NVMM and DRAM.

There have been a few new hybrid memory systems

designed from scratch, and also performance optimiza-

tions of existing systems using the new Intel Optane

DCPMM device. Lersch et al. [83] conducted an exten-

sive study of range indexes on DCPMM. They use an

unified programming model for all trees to guarantee

fair comparison and developed a benchmarking frame-

work called PiBench. The empirical evaluation has rec-

ognized effective techniques, insights, and caveats to

direct the design of future PM-based index structures.

Dash [84] is a holistic approach to building dynamic

and scalable hash tables on DCPMM. The design takes

scalability, load factor and recovery into consideration.

They develop two popular dynamic hashing schemes,

i.e., extendible hashing and linear hashing to demon-

strate the efficiency of Dash. Gill et.al. [90], present the

runtime and algorithmic principles of performing large-

scale graph analytics on DCPMM and highlight the

principles of graph analytics on all large-memory plat-

forms. Mahapatra et al. [85] argue that it is inefficient

to persist all data structures such as Doubly Linked

List, B+Tree and Hashmap in persistent memory. They

showcase that alternate partly persistent implementa-

tions can also recreate the data structures along with

the redundant data fields upon a system crash. Their

solution can significantly improve the performance for

a flush-dominated data structure. Ni et al. [86] present

performance studies on the interplay of DCPMM hard-

ware and indexing data structures, and propose group

flushing and persistent optimized log-structuring tech-

A Survey of Non-Volatile Main Memory Technologies 13

niques for improving the performance of indexing data

structure on persistent memories. FlatStore [87] is

an efficient PM-based key-value store particularly opti-

mized for DCPMM. It decouples the data structure of

a KV store into a persistent log structure for efficient

storage and a volatile index for fast indexing. Due to

the wider availability of DCPMM, more research stud-

ies of system design and implementation on real NVMM

emerge.

4 Performance Improvement and Energy Sav-

ing

As NVMMs show much higher access latency and

write energy consumption, there have been a lot of

studies on performance improvement and energy sav-

ing for NVMMs [25, 62, 63, 26, 60, 24]. These works

can be classified into three kinds: reducing the number

of NVMM writes, reducing the energy consumption of

NVM writes themselves, and DRAM energy consump-

tion reduction.

4.1 NVMM Write Reduction

To reduce NVMM writes, a hierarchical architecture

is obviously more appropriate since the DRAM cache

reduces abundant NVMM writes. Two major tech-

niques namely page migration and bypassing NVMM

writes have been developed for this purpose.

Page Migration. Page migration [23, 20, 25, 55,

56] policies choose the pages to be migrated mainly

based on the the number of writes and recency of each

page. Their main differences are in the conditions in

which a page migration is triggered.

PDRAM [20] migrates PCM pages to DRAM ac-

cording to the number of writes. In PDRAM, the mem-

ory controller maintains a table to record access counts

of each PCM page. If the number of writes to a PCM

page exceeds a given threshold, a page fault is triggered

and then the page is migrated from the PCM page to

DRAM.

CLOCK-DWF [25] integrates the write history of

pages into the CLOCK algorithm. When a page fault

occurs, the virtual page is fetched from disk to PCM

if it is a read fault. Otherwise, the page is originally

allocated in DRAM as the page is likely to be a write-

intensive one.

RaPP [23] migrates pages between DRAM and

PCM based on the rank of pages. In RaPP, pages

are ranked by the access frequency and recency. Top-

ranked pages are migrated from PCM to DRAM. Thus,

frequently written pages are placed in DRAM while sel-

dom written pages are placed in PCM. Moreover, RaPP

also places mission-critical pages in DRAM to improve

application performance. By monitoring the number

of writeback operations for each page in LLC, mem-

ory controller is able to track the access frequency and

recency information of each page. RaPP ranks pages

according to the Multi-Queue (MQ) algorithm [123]. A

conventional MQ defines M Least Recently Used (LRU)

queues. Each LRU queue is a queue of page descriptors

which include a reference counter and a logical expira-

tion time. When a page is accessed at the first time,

the page is moved to the tail of the queue 0. If the

reference count of the page reaches 2i+1, the page is

prompted to queue i + 1. Once a PCM page is moved

to the queue 5, it is migrated to DRAM.

Buffering NVMM Writes. In a hybrid memory

system, caches are able to reduce a large number of

writes to NVMM. A proper cache replacement policy

not only improves application performance, but also

reduces the energy consumption of NVMM. Previous

studies have found that many blocks in cache would

not be reused again before they are evicted from the

cache. These blocks are called dead blocks and con-

sume precious cache capacity. DASCA [8] proposes a

14 J. Comput. Sci. & Technol.

dead block prediction method to reduce the energy con-

sumption of STT-RAM caches. Evicting these dead

blocks will reduce the writes to STT-RAM caches and

does not affect the cache hit rate. WADE [59] further

exploits the asymmetry of energy consumption between

NVMM read and NVMM write. As NVMM write op-

erations consume much more energy than NVMM read

operations, those frequently-written blocks should be

kept in the cache. WADE divides the blocks in cache

into two categories: frequently written-back blocks and

non-frequently written-back blocks. Non-frequently

written-back blocks are replaced to offer more opportu-

nities for keeping other data blocks in the cache.

4.2 NVMM Energy Consumption Reduction

Since a NVMM write shows several times higher

energy consumption than a NVMM read, there have

been many efforts in reducing the energy consumption

of NVMM writes. These approaches can be divided

into two categories: differential write (only write dirty

bits other than the whole line), parallel multiple writes

during a single write.

Flip-N-Write [61] tries to reduce PCM write energy

consumption by flipping the bits if the number of bits

to be written exceeds half of the total bits in a cache

line. During a single write, if more than half of bits in

the line are written, each bit is flipped and thus the bit

flips are no more than 50% of total bits. Meanwhile, a

tag bit is set to identify whether the bits in a line are

flipped. When the line is read, the tag bit is used to

determine whether the bits in the line should be flipped.

Similar to Flip-N-Write, Andrew [70] et. al. ad-

vocate fine-grained write. It only monitors dirty bits

rather than all bits in a line. A new term called PCM

power token is introduced to indicate the power sup-

ply during a single write. Assume each chip is as-

signed Plimit Watts power and each bit-write requires

Pbit Watts, bPlimit/Pbitc bits can be written simulta-

neously. Within a chip, banks can be written concur-

rently. During a single write, if a number of write re-

quests located in different banks and the total power

consumption doesn’t exceed Plimit, these writes can be

executed simultaneously. Thus, fine-grained write not

only reduces the NVMM writes, but also improve sys-

tem performance by achieving higher bank parallelism.

A few studies [62, 63] improve energy efficiency of

NVMMs by separating the SET and RESET opera-

tions. As NVMMs consume more energy and time to

write 1 than that of writing 0, both the write latency

and energy consumption can be reduced if these writes

are performed in a proper manner. Three-stage-write

[62] divides a write operation into a comparison stage, a

write-zero stage and a write-one stage. In the compar-

ison stage, the Flip-N-Write mechanism is exploited to

reduce the number of writes. The zero bits and one bits

are written separately in the write-zero stage and the

write-one stage, respectively. Because write-zero opera-

tions accounts for a majority of write operations in most

workloads, Tetris Write [63] further takes the asymme-

try of SET and RESET operations into account, and

schedules the costly write-one operations in parallel.

The write-zero operations are inserted in the remain-

ing interval of write-one operations under the power

constrain.

CompEx [64] proposes a compression expansion

encoding mechanism to reduce energy consumption

for MLC/TLC NVMMs. To improve the lifetime of

MLC/TLC cells, data is compressed first to reduce data

redundancy. An expansion code is then applied to the

compressed data and written to physical NVMM cells.

For a TLC cell with 8 states, the state 0, 1, 6 and 7

are called terminal energy state while the state 2, 3, 4

and 5 are called central energy states. Central energy

states consume more time and energy as they need more

A Survey of Non-Volatile Main Memory Technologies 15

program and verify iterations. CompEx leverages the

expansion code to use only terminal energy state for

NVMM cells. This idea is motivated since the terminal

energy state needs less energy and time than the central

energy states when programming a MLC/TCL cell.

Hybrid on-chip caches are also proposed to reduce

power consumption of CPUs. RHC [65] constructs a

hybrid cache, in which each way in SRAM and NVMM

can be powered on or off independently. If a row has

not been accessed for a long time, the row is powered

off while its tag is still powered on to track the accesses

of this row. When the accesses to the tag exceeds a

threshold, the row is powered on. To best utilize the

high-performance SRAM and the low dynamic-power

NVMM, RHC adopts different thresholds for SRAM

and NVMM.

4.3 DRAM Energy Consumption Reduction

In a memory system with only DRAM, the static en-

ergy consumption can accounts for more than half of to-

tal energy consumption of memory systems [66, 67, 68].

In hybrid memory systems, page migration techniques

are widely used to mitigate the energy consumption

of DRAM. The inactive pages can be migrated from

DRAM to NVMM so that the idle DRAM banks can

be powered off. When the page becomes active later,

it is migrated to DRAM again. However, if the page

migration is not properly performed, the DRAM ranks

may be frequently powered off and reactivate. The ex-

tra energy consumption is likely to offset the benefit

gained by page migrations.

To reduce energy consumption in hybrid memory

systems, RAMZzz [9] reveals two major roots of high

energy cost. One is the sparse distribution of ac-

tive pages, another one is that page migrations may

be not effective since the transfer among multi-energy

states of DRAM introduces additional energy consump-

tion. To solve the former problem, RAMZzz uses mul-

tiple queues to collect pages with similar activity into

the same DRAM rank, avoiding frequent energy state

transfers. The multiple queues have L LRU queues to

record the page descriptors. A page descriptor contains

the page’s ID and access (both read and write) counts

in a period of time. To reduce energy overhead of data

migration, pages with similar memory access behavior

are regrouped together. In this way, pages need to be

allocated to new banks. RAMZzz migrates these pages

between banks in parallel.

Refree [69] further reduces DRAM energy consump-

tion in hybrid memory systems by avoiding DRAM re-

fresh. When a DRAM row requires to be refreshed, it

means the row has not been accessed for a long time.

The data in the row is obsolete and it is not likely ac-

cessed again in the near further. Refree evicts these

rows to PCM rather than refreshing them in DRAM.

In Refree, all rows are monitored periodically. The in-

terval of this period is equal to half of the retention

time of a DRAM row since its last refresh. Therefore,

rows are divided into active rows and non-active rows.

The active rows are charged when they are accessed.

Non-active rows are evicted to PCM so that DRAM

refreshes are eliminated.

5 Write Endurance Improvement

In a hybrid memory system, there are mainly two

strategies to overcome the limited write endurance of

NVMMs. One is to reduce NVMM writes, and another

is wear-leveling which spreads the write traffic evenly

among all NVMM cells.

5.1 Write Reduction

There have been many write reduction strategies

proposed for improving the lifetime of NVMMs, includ-

ing data migration [23, 20, 9], caching or buffering [30],

16 J. Comput. Sci. & Technol.

inner-NVM write reduction [70, 61, 71].

A lazy write mechanism [30] is proposed to reduce

the writes in PCM. In a hierarchical hybrid memory

system, a DRAM buffer is used to hide the high-latency

PCM accesses. When a page fault occurs, the data is

fetched from disk into the DRAM cache directly. The

page is not written to PCM until the page is evicted

from the DRAM cache. Line-level write can also re-

lieve write operations on NVMMs and thus reduce wear

of NVMMs [30]. For memory-intensive workloads, the

write operations may be concentrated in a few lines.

By tracking the cache line in DRAM, only the dirty

lines are written back to PCM other than all lines of

the page. Memory compression mechanisms [64, 72] are

proposed to improve the lifetime of MLC/TLC NVMM.

Data is compressed first before writing to NVMM cells.

Therefore, only a small part of NVMM cells are writ-

ten. However, the enhancement of endurance is at the

expense of a moderate performance degradation. If a

NVMM cell is written with a lower dissipated power,

the cell can sustain more writes at the expense of higher

write latency. Specifically, When the speed of writ-

ing a NVMM cell declines N times, the endurance of

the cell can be improved by N1 to N3 times. Mellow-

Writes [73] explores this feature to improve the lifetime

of NVMMs. To mitigate the performance degradation,

Mellow Writes only adopt slow writes to bank with only

one write operation.

5.2 Wear-Leveling

Different from write reduction methods, wear-

leveling spreads writes among all NVMM pages evenly.

Although the total number of write is not reduced,

wear-leveling techniques can prevent some pages from

being worn out by intensive writes quickly.

For NVMMs, we can record the write counts of

each line to guide the wear-leveling policies. However,

the external storage overhead can’t be ignored. Start-

Gap [74] proposes a fine-grained wear-leveling scheme.

The lines of a PCM page are stored in a rotating man-

ner. A rotating value is generated randomly between

0 and 15 to indicate the shifted positions. For a PCM

page with 16 lines, the rotating value can range from 0

to 15. When the rotating value is 0, the page is stored

in its original address. If the rotating value is 1, line

0 is stored in line 1’s physical address, and each line’s

address is shifted by the rotated value.

In PDRAM [20], wear leveling is triggered by a

threshold of write counts. When the write counts of

a page exceeds the given threshold, a page swapping

interrupt is triggered to migrate the page to DRAM.

The swapped PCM page is added to a list in which

these pages will be relocated again.

Zombie [75] offers another direction to achieve weal-

leveling, and further extends the overall lifetime of

PCM. Other than Start-Gap that distributes writes

among PCM cells evenly, Zombie leverages spare blocks

in disabled pages to provide more error correction re-

source for working memory. When a PCM cell is worn

out, it becomes unavailable. As memory footprint is or-

ganized in pages from the perspective of software, the

whole page which contains the failure cell is disabled.

However, if some spare cells are provided to replace the

failed cells, the page can be used again. These spare

cells are called error correction resource. When all spare

cells are exhausted, the page with failed cells is aban-

doned finally. Usually, there are about 99% bits avail-

able when a page is disabled. Zombie utilizes the large

number of good bits in disabled pages as the spare error

correction resource, in which good bits are organized in

fine-grained blocks. By pairing the working page with

error correction resources, Zombie can extend the life-

time of NVMMs much longer.

DRM [76] adds an intermediate mapping layer

A Survey of Non-Volatile Main Memory Technologies 17

between the virtual address space and the physical

NVMM address space. In the intermediate address

space, a page may map to a good page in PCM or two

compatible PCM pages with faults. The compatible

page means a pair of pages with fault bytes, but none

of these fault bytes locate in the same place of the two

pages. Thus, two compatible pages can be combined to

form a new good page. In this way, DRM significantly

improves PCM lifetime by 40×.

6 Practices of Hybrid Memory System Designs

In this section, we introduce our recent efforts

and practices of system designs and optimizations on

NVMMs from the perspective of memory architec-

ture, OS-supported hybrid memory management, and

NVMM-supported applications, as shown in Figure 5.

In the following, we will present those systems briefly.

DRAM PCM Memristor ReRAMIntel Optane

DCPMM

Hardware

Memory

Architecture

System

Software

Applications

NVM Simulator

and Emulator

NVM Wear

Leveling

Hybrid Memory

Architecture

Hybrid Memory Aware

LLC Management

Hybrid Memory

Allocation

 NUMA-aware

Page Migration

NVM-enable

VMs

Superpage

Support

In-memory

K-V Store

Graph

Computing

Machine

Learning
MapReduce

Fig.5. Our practices of system designs on hybrid memories

6.1 Memory Architectural Designs

In this subsection, we present our studies on hybrid

memory simulation and emulation, hardware/software

cooperative hybrid memory architecture, fine-grained

NVM compression and wear leveling, and hybrid mem-

ory aware on-chip cache management.

6.1.1 Hybrid Memory Architectural Simulation

A hybrid memory architectural simulation is a pre-

requisite for studying hybrid memory systems. We inte-

grate zsim [14] with NVMain [13] to build a full-system

architectural simulator. Zsim is a fast processor sim-

ulator for x86-64 multi-core architectures. It is able

to model multi-cores, on-chip cache hierarchy, cache

coherence protocols such as MESI, on-chip intercon-

nect topology network, and physical memory interfaces.

Zsim collects memory trace of processes using Intel Pin

toolkit, and then replays the memory trace to charac-

terize the memory access behaviors. NVMain is an ar-

chitectural Level main memory simulator for NVMMs.

It is able to simulate different profiles of memories such

as read/write latency, bandwidth, power consumption,

and so on. It also support subarray-level memory paral-

lelism and different memory address encoding schemes.

Moreover, NVMain can also model hybrid memories

such as DRAM and different NVMMs in the memory

hierarchy. Since OS-level memory management is not

simulated by zsim, we extend zsim by adding Trans-

lation Lookaside Buffer (TLB) and memory manage-

ment modules (such as buddy memory allocator and

page tables) to support a full-system simulation. Imple-

mentation details are refereed to our open-source soft-

ware [15]. Our work provides a fast, and full-system ar-

chitectural simulation framework to the research com-

munity. It can help researchers to understand different

NVMM features, design hybrid memory systems, and

evaluate the impact of various system designs on appli-

cation performance in a easy and efficient manner.

6.1.2 Lightweight NVMM Performance Emulator

Current simulation-based approaches for studying

NVMM technologies are either too slow, or can not run

complex workloads such as parallel and distributed ap-

plications. We propose HME [17], a lightweight NVMM

performance emulator using Non-Uniform Memory Ac-

cess (NUMA) architectures. HME exploits hardware

performance counters available in commodity Intel

CPUs to emulate the performance features of slower

18 J. Comput. Sci. & Technol.

NVMMs. To emulate the access latency of NVMMs,

HME injects software-generated latency into DRAM

accesses on the remote NUMA nodes periodically. To

mimic the NVMM bandwidth, HME utilizes DRAM

thermal control interfaces to throttle the amount of

memory requests to a DRAM channel in a short period

of time. Unlike another NVMM emulator Quartz [18]

that do not emulate the write latency of NVMMs, HME

identifies write-through and write-back cache eviction

operations and emulates their latencies, respectively.

In this way, HME is able to significantly reduce em-

ulation errors of NVMM access latencies on average

compared to Quartz [18]. Before the advent of real

NVMM device–Intel Optane DCPMM, this work can

help researchers and programmers to evaluate the im-

pact of NVMM performance characteristics on applica-

tions, and guide the system designs and optimizations

on hybrid memory systems.

6.1.3 Hardware/Software Cooperative Caching

Based on our hybrid memory simulator, we propose

a hardware/software cooperative hybrid memory archi-

tecture called HSCC. In HSCC, DRAM and NVMM are

physically organized in a single memory address space

and are all used as main memory. However, the DRAM

can be logically used as a cache of NVMM and also

managed by OSes. Figure 6 shows the system archi-

tecture of HSCC. We extend page tables and TLB to

maintain the NVMM-to-DRAM physical address map-

pings, and thus manage DRAM/NVMM in the form of

a cache/memory hierarchy. In this way, HSCC is able

to perform NVMM-to-DRAM address translation as ef-

ficient as virtual-to-NVMM address translation. Also,

we add an access counter in each TLB entry and page

table entry to monitor memory references. Unlike pre-

vious approaches monitoring memory accesses in the

memory controller or OSes, our design can track all

data accesses accurately with trivial storage (SRAM)

and performance overhead. We identify frequently ac-

cessed (hot) pages through a dynamic threshold ad-

justment strategy to adapt to different applications,

and then the hot pages in NVMM are migrated to

DRAM cache for higher performance and energy effi-

ciency. Moreover, we develop an utility-based DRAM

cache filling scheme to balance the efficiency of DRAM

cache and DRAM utilization. As the software-managed

DRAM pages are able to map to any NVMM pages,

the DRAM is actually used as a fully associative cache.

This approach can significantly improve the utilization

of DRAM cache, and also offers opportunities to re-

configure the hybrid memory architecture according to

dynamic memory access behaviors of applications. As

CPUs can bypass the DRAM cache to directly access

cold data in NVMM, the DRAM can be used either as

main memory in the flat-addressable hybrid memory

architecture, or as a data filter cache of NVMM in the

hierarchical hybrid memory architecture. As a result,

HSCC can significantly improve system performance by

up to 9.6X and reduce energy consumption by about

34.3% compared to a state-of-the-art work [30]. Our

work offers the first architectural solution to achieve

reconfigurable hybrid memory systems that can dy-

namically change the management of DRAM/NVMM

between horizontal and hierarchical memory architec-

tures.

 Core 0 Operating System

Extended Page Table

Utility-based DRAM
Cache Filter

On-chip shared Cache

data miss, bypass
DRAM cache

DRAM

Fetch

Evict

Fetching-threshold
Adjustment

DRAM Cache
Manager

DRAM Cache
Allocator

DRAM Memory
Controller

NVM Memory
Controller

NVM

NVM page
Fetcher

update

allocation request

...

access
information

Software Layer Hardware layer

data hit, access
DRAM cache

threshold

Modified
TLB

 Core n
Modified

TLB

DRAM Cache
Pool

Fig.6. System architecture of HSCC [34]

We further propose the following techniques on

A Survey of Non-Volatile Main Memory Technologies 19

HSCC to improve the cache performance and improve

the wear-leveling mechanisms.

As the cache miss penalty for a NVMM block is

several times higher than a DRAM block, the cache

hit rate is not the only one performance metric that

should be improved in a flat-addressable hybrid mem-

ory architecture. To best utilize the expensive LLC,

we propose a new metric, i.e., Average Memory Ac-

cess Time (AMAT), to assess the overall performance

of hybrid memory systems. We take the asymmetrical

cache miss penalty of DRAM blocks and NVMM blocks

into account, and propose a LLC miss penalty aware re-

placement algorithm called MALRU [28, 29] to improve

the AMAT in hybrid memory systems. MALRU parti-

tions the LLC into a reserved region and a normal re-

placement region dynamically. MALRU preferentially

replaces dead and cold DRAM blocks in the LLC so

that NVMM blocks and hot DRAM blocks are kept in

the reserved region. In this way, MALRU achieve appli-

cation performance improvement by up to 22.8% com-

pared with the LRU algorithm. This work showcases

how the hybrid memory system can effect the architec-

tural design of on-chip cache.

To improve the write endurance of NVMM, we

propose a new NVMM architecture to support space-

oblivious data compression and wear-leveling. As mem-

ory blocks of many applications usually contain a large

amount of zero bytes and frequent values, we propose

Zero Deduplication and Frequent Value Compression

mechanisms (called ZD-FVC) to reduce bit-writes on

NVMM. ZD-FVC can be integrated into the NVMM

module and implemented entirely by hardware, without

any intervention of Operating Systems. We implement

ZD-FVC in Gem5 and NVMain simulators, and eval-

uate it with several programs from SPEC CPU2006.

Experimental results shows that ZD-FVC is much bet-

ter than several state-of-the-art approaches. Particu-

larly, DZ-FVC can improve data compression ratio by

1.5X compared to Frequent Value Compression. Com-

pared with Data Comparison Write, ZD-FVC is able

to reduce bit-writes on NVMM by 30%, and signifi-

cantly improve the lifetime of NVMM by 5.8X on av-

erage. Correspondingly, ZD-FVC also reduces NVMM

write latency by 43% and energy consumption by 21%

on average. Our design provides a fine-grained data

compression and wear-leveling solution for NVMMs in

simple and efficient manner. It is complementary to

other wear-leveling schemes to further improve NVMM

lifetime.

6.2 System Software for Hybrid Memories

In this subsection, we present our practices of hy-

brid memory systems in the software layer, including

object-level hybrid memory allocation and migration,

NUMA-aware page migration, superpage supporting,

and NVMM virtualization mechanisms.

6.2.1 Object Migration in Hybrid Memory Systems

Page migration techniques have been widely ex-

ploited to improve system performance and energy ef-

ficiency in hybrid memory systems. However, previous

page migration schemes all rely on costly online page

access monitoring schemes in the OS layer to track page

access recency or frequency. Moreover, data migration

at the page granularity often results in non-trivial per-

formance overhead because of additional memory band-

width consumption and cache/TLB consistency guar-

antee mechanism.

To mitigate the performance overhead of data mi-

gration in hybrid memory systems, we propose more

lightweight object-oriented memory allocation and mi-

gration mechanisms called OAM [124]. The framework

of OAM is shown in Figure 7. Unlike previous stud-

ies [125, 38] that only profiles memory access behav-

iors in a global view for static object placement, we

20 J. Comput. Sci. & Technol.

Source
 Code

Modified
Executable

DRAM

NVM

DRAM_alloc

NVM_alloc

DyMalloc
Object
Access
Pattern

Object
Placement
Decision

Object Analysis and
Utility Models

Profiling Tool
Object

Migration

DRAM Resource Utilization

Source
 Code

Offline Profiling and Code Instrumentation (OPCI)

Main MemoryOperating System

Online Memory Allocation and Migration (OMAM)

Fig.7. An overview of OAM framework [124]

further analyze object access patterns in fine-grained

time slots. OAM leverages a compile framework LLVM

to profile application memory access patterns at the

object granularity, and then divides the execution of

applications into different phases. OAM exploits a per-

formance/energy integrated model to guide the initial

memory allocation and runtime object migration in dif-

ferent execution phases, without intrusive modifications

of hardware and OSes for online page access monitor-

ing. We develop new memory allocation and migration

APIs by extending the Glibc library and Linux kernel.

Based on these APIs, programmers are able to allocate

DRAM or NVMM to different objects explicitly, and

then migrate the objects whose access patterns are dy-

namically changed between DRAM and NVMM. We

develop a static code instrumentation tool to automat-

ically modify legacy applications’ source codes, with-

out re-engineering the applications by programmers.

Compared to the state-of-the-art page migration ap-

proaches CLOCK-DWF [25] and 2PP [38], experimen-

tal results show that OAM can significantly reduce data

migration cost by 83% and 69% respectively, mean-

while achieve about 22% and 10% application perfor-

mance improvement. Previous persistent memory man-

agement schemes often rely on memory access profil-

ing to guide static data placement, and page migration

(costly) techniques to adapt to dynamic memory access

patterns at runtime. OAM provide a more lightweight

hybrid memory management scheme which provides

fine-grained object-level memory allocation and migra-

tion.

6.2.2 NUMA-aware Hybrid Memory Management

In Non-Uniform Memory Access (NUMA) architec-

tures, application-observed memory access latencies in

different NUMA nodes are usually asymmetrical. Be-

cause NVMM is several times slower than DRAM, hy-

brid memory systems can further enlarge the perfor-

mance gap among different NUMA nodes. Traditional

memory management mechanisms for NUMA systems

is no longer effective in hybrid memory system and may

even degrade application performance. For example,

The automatic NUMA balancing (ANB) policy always

migrates application data in a remote NUMA node to

a NUMA node in which the application threads or pro-

cesses are running. However, since the access perfor-

mance of remote DRAM may be even higher than that

of local NVMM, ANB may falsely move application

data to a slower place. To address this problems, we

propose HiNUMA [57], a new NUMA abstraction for

hybrid memory management. When application data

is first placed in the hybrid memory system, HiNUMA

places application data on both NVMM and DRAM

to balance memory bandwidth utilization and total ac-

cess latency for bandwidth-sensitive applications and

latency-sensitive applications, respectively. The ini-

tial data placement are based on NUMA topology and

hybrid memory access performance. For runtime hy-

brid memory management, we propose a new NUMA

balancing policy named HANB for page migrations.

HANB is able to reduce the total cost of hybrid memory

A Survey of Non-Volatile Main Memory Technologies 21

accesses by taking both data access frequency and mem-

ory bandwidth utilization into account. We implement

HiNUMA in Linux kernel, without any modifications of

hardware and applications. Compare with traditional

memory management policies in NUMA architectures

and other state-of-the-art works, HiNUMA can signif-

icantly improve application performance by efficiently

utilizing hybrid memories. The lessons learned from

this work is also applicable to hybrid memory systems

equipped with real Intel Optane DCPMM device.

6.2.3 Supporting Superpages in Hybrid Memory Sys-

tems

With a rapid growth of application footprint and the

corresponding memory capacity, virtual-to-physical ad-

dress translation has become a new performance bot-

tleneck for hybrid memory systems. superpages have

been widely exploited to mitigate address translation

overhead in big-memory systems. However, the side

effect of using superpages is that they often impede

lightweight memory management such as page migra-

tion, which is widely exploited in hybrid memory sys-

tems to improve system performance and energy effi-

ciency. Unfortunately, it is challenging to have both

world of superpages and lightweight page migration.

To address this problem, we propose a novel hy-

brid memory management systems called Rainbow [35]

to bridge the fundamental conflict between superpages

and lightweight page migration. As shown in Figure

8, Rainbow manages NVMM at the granularity of su-

perpages (2 MB), and manages DRAM as a cache to

store hot data blocks in superpages at the granularity

of base pages (4 KB). To speed up address translations,

Rainbow employs the existing hardware feature of split

TLBs to support superpages and normal pages.

Last Level Cache

...

NVM

Memory access

counting

Core N

Superpage

(2MB) TLB

Small page

(4KB) TLB

Core 1

Superpage

(2MB) TLB

Small page

(4KB) TLB

Migration bitmap

0 1 0 0 ... 1 1 00 1 0 0 ... 1 1 00

page writeback

page migration

Hybrid Main Memory

Controller

2MB superpage

2MB superpage

2MB superpage

...

DRAM

4 KB page

4 KB page

4 KB page

4 KB page

...

DRAM manager

Hot page

identifier

Page migration

controller

OS

Fig.8. The architecture of Rainbow [35]

We propose a two-stage page access monitor mech-

anism to identify hot base pages within superpages.

In the first stage, Rainbow records the access counts

of all superpages to identify top-N hot superpages.

In the second stage, we logically split those hot su-

perpages into base pages (4 KB) and further monitor

them to recognize hot base pages. This schemes signif-

icantly diminish the SRAM storage overhead for page

access counters and runtime performance overhead due

to sorting the hot base pages. With a new NVMM-

to-DRAM address remapping mechanism, Rainbow is

able to migrate hot base pages to DRAM while still

guaranteeing the integrity of superpage TLB. The split

superpage TLBs and base page TLBs are consulted

in parallel. Our address remapping mechanism logi-

cally uses superpage TLBs as a cache of the base page

TLBs. Because the hit rate of superpage TLB is of-

ten very high, Rainbow is able to significantly acceler-

ate base page address translation. To further improve

TLB hit rate, we also extend Rainbow to support mul-

tiple page sizes and migrate contiguous hot base page

together [36]. Compared with a state-of-the-art hybrid

memory system without superpage support, Rainbow

can significantly improve application performance by

at most 2.9X by having the benefit of both using su-

perpages and lightweight page migration.

22 J. Comput. Sci. & Technol.

This work provides a hardware/software coopera-

tive design to bridge the fundamental conflict between

superpages and lightweight page migration techniques.

This may be a promising solution to mitigate the ever-

increasing virtual-to-physical address translation over-

head in large-capacity hybrid memory systems.

6.2.4 NVMM Management in Virtual Machines

NVMMs are expected to be more popular in cloud

and data center environments. However, there have

been few work on using NVMMs for virtual machines

(VMs). We propose HMvisor [58], a hypervisor/VM co-

operative hybrid memory management system to utilize

DRAM and NVMM efficiently. As shown in Figure 9,

HMvisor exploits a pseudo-NUMA mechanism to sup-

port hybrid memory allocation in VMs. Since virtual

NUMA nodes in a VM can be mapped to different phys-

ical NUMA nodes, HMvisor can map different memory

regions to a single VM and thus expose memory het-

erogeneity to VMs.

Allocator front-endl

Allocator back-end

Guest OS

KVM

Balloon

Migration driver

Memory
management

NUMA Abstraction

Hot pages tracking &
Dynamic memory monitor

7.Perform migration

2.Get memory pages

4.Enable
detection

9.Update guest hybrid memory

8.Guide balloon
to adjust memory
type of VM

DRAM NVM

1.Request
memory pages

3.NUMA-based memory
allocator & Update page tables

Application-transparent

5.Track hot/cold pages

6.Add target
page frames to
shared memory

Fig.9. System overview of HMvisor [58]

To support lightweight page migration in VMs,

HMvisor monitors page access counts and classify hot

pages and cold pages in the hypervisor, and then

the VM periodically collects the information of hot

pages through a inter-domain communicate mechanism.

We implement a loadable driver in the VM to per-

form process-level page migrations between DRAM and

NVMM. Since HMvisor performs page migrations by

the VM itself, HMvisor does not need to suspend the

VM for page migrations. HMvisor also advocates a hy-

brid memory resource trading policy to dynamically ad-

just the size of NVMM and DRAM in a VM. In this

way, HMvisor can meet different memory requirement

(capacity or performance) of diversifying applications

while keeping the total monetary cost of the VM un-

changed.

The prototype of HMvisor is implemented in the

QEMU/KVM platform. Our evaluation shows that

HMvisor is able to reduce NVMM write traffic by 50%

at the expense of only 5% performance overhead. Fur-

thermore, the dynamic memory adjustment policy can

significantly reduce major page faults in a VM when it

suffers high memory pressure, and thus can even im-

prove application performance by 30 times.

This is an early system work to manage hybrid

memory in a virtualization environment. The proposed

schemes are completely implemented by software, and

thus also applicable to hybrid memory systems com-

prising of the new Intel Optane DCPMM device.

6.3 NVMM-supported Applications

Since hybrid memory systems can provide very large

capacity of main memory, they have been widely ex-

plored for big data applications such as in-memory key-

value (K-V) stores and graph computing. In this sub-

section, we present our practices of NVMM-supported

system optimizations for those applications.

In-memory K-V stores with large-capacity memory

can cache more hot data in main memory, and thus

deliver higher performance to applications. However,

there are several challenges to directly deploy tradi-

tional K-V stores such as memcached in hybrid memory

A Survey of Non-Volatile Main Memory Technologies 23

systems. For example, how to identify hot K-V objects

efficiently? How to redesign a NVMM-friendly K-V in-

dexes to reduce NVMM writes? How to redesign the

cache replacement algorithm to balance object access

frequency and recency in hybrid memory systems. How

to address the slab calcification problem [126] to best

utilize DRAM resource in hybrid memory systems.

To address the above problems, we propose HM-

Cached [77], an extension of K-V cache (memcached)

for hybrid DRAM/NVMM systems. Figure 10 shows

the system architecture of HMCached. HMCached

tracks K-V object accesses and records the access

counts in each K-V pairs’ metadata structure, so that

HMCached can easily identify frequently-accessed (hot)

objects in NVMM and migrates them to DRAM. In this

way, we logically use DRAM as an exclusive cache of

NVMM to avoid more costly NVMM accesses. More-

over, we redesign an NVMM-friendly K-V data struc-

ture by splitting the hash-based K-V indexes to fur-

ther reduce NVMM accesses. We put the frequently-

updated metadata (e.g., reference counts, timestamp,

and access counts) of K-V objects in DRAM, and the

remaining portion (e.g. keys and values) in NVMM. We

exploit a multi-queue algorithm to take both object ac-

cess frequency and recency into accounts for DRAM

cache replacement. Moreover, we set up an utility-

based performance model to evaluate the benefit of slab

class reassignment. Our dynamic slab reallocation pol-

icy is able to address the slab calcification problem ef-

fectively, and significantly improve application perfor-

mance when the data access pattern changes. Com-

pared to the vanilla memcached, HMCached can sig-

nificantly reduce NVMM accesses by 70% and achieves

about 50% performance improvement. Moreover, HM-

Cached is able to reduce 75% DRAM cost while the

performance degradation is less than 10%.

To the best of our knowledge, we are the first to

explore object-level data management for K-V stores

in hybrid memory systems. We implement HMCached

based on Memcached and open the source codes. We

find that later works such as flatstore [87] have a similar

idea to decouple the data structure of KV stores.

Disk / Back-end Database

1

Clock Replacement

MQ Replacement

Threshold

Adjustment

Counter

Decaying

Threshold

Hot Objects Migration

Data Access Counting

User

Requests

0 1 ··· n

0 1 ··· n

2

Migration

Decisions

Class 1

Class n

Class 2
DRAM

Reassignment

DRAM

···

NVM

Class 1 Class 2

Class n···

N-zone

D-zone

Fig.10. Architecture of HMCached [77]

Today we have witnessed a number of in-memory

graph processing systems in which application perfor-

mance are highly bound to the capacity of main mem-

ory. High-density and low-cost NVMM technologies are

essential to mitigate I/O cost for graph processing. As

shown in Figure 11, hybrid memory system can signif-

icantly improve application performance compared to

a SSD-based storage system. Figure 12 shows the ap-

plication performance gap between a hybrid memory

system and a DRAM-only system. Although the gap

is acceptable, it indicates that there are still opportu-

nities to further exploit the advantages of NVMM and

DRAM for in-memory graph processing systems.

24 J. Comput. Sci. & Technol.

BFS PageRank CC SPMV
0

500

1000

1500

2000

2500 DRAM+NVM
 DRAM+SSD

Fig.11. Performance difference between “DRAM+NVM” and
“DRAM+Disk” systems

Ligra X-stream
0.6

0.8

1.0

1.2

1.4

1.6

 BFS PageRank
 CC SPMV

Fig.12. Performance difference between a hybrid memory sys-
tem and a DRAM-only system

We propose NGraph [88], a new graph processing

framework particularly designed to better utilize hy-

brid memories. We develop hybrid memory aware data

placement policies based on access patterns of differ-

ent graph data to mitigate random and frequent ac-

cesses to NVMM. Generally, graph structure data ac-

counts for a majority of total graph data. NGraph

partitions graph data according to destination vertices

and employs a task decomposition mechanism to avoid

data contention between multiple processors. More-

over, NGraph adopts a work stealing mechanism to

minimize the maximum time of parallel graph data pro-

cessing on multicore systems. We implement NGraph

based on a graph processing framework Ligra. NGraph

can improve application performance by up to 48%

compared with the state-of-the-art work Ligra. The

lessons learned from this work can be exploited to fur-

ther improve the performance of large-scale graph an-

alytics in a graph processing platform equipped with

real PM device.

7 Future Research Directions

The advent of NVMM technologies has aroused

many interesting research topics in the area of mate-

rial, microelectronics, computer architecture, system

software, programming model, and big data applica-

tions. As real NVMM device such as Intel Optane

DCPMM [94] has been increasingly applied to data

center environments, NVMMs may change the stor-

age landscape of data centers. Our experiences and

practices have demonstrated some preliminary and in-

teresting studies on those dimensions. In the follow-

ing, we share our vision of future research directions of

NVMMs, and analyze the research challenges and new

opportunities. Figure 13 illustrates the future trends of

NVMM technologies in different dimensions.

FPGA

DRAM NVM
DRAM NVM

DRAM NVM

DRAM NVM

…

ASIC

Memory

Fabric
Processing

in Memory

Near Data

Processing

3D Stacking

HBM/HMC NVM

NVMM Technologies

Memristor/ReRAM

Hybrid Memory

Pool

CPUNVMDRAM

Fig.13. Future directions of NVMM technologies

First, the development of of 3D stacked NVMM

technologies is still continuing. NVMMs are expected

to provide higher integration density for cost reduc-

tion. Currently, the high-end NVDIMMs is still too ex-

pensive for enterprise applications. The key challenge

for NVMMs to compete with traditional DRAM and

NAND flash is the storage density or the cost per byte.

There are mainly two monolithic 3D integration mech-

anism for NVMM technologies [127]. One is to stack

the horizontal cross-point array layer by layer, such as

Intel/Micron 3D X-point [94]. Another is the vertical

A Survey of Non-Volatile Main Memory Technologies 25

3D stacked structure that is referred to ReRAM tech-

nology. However, the 3D integrate technologies are not

full-blown. There still remains many challenges such as

fabrication cost, pillar electrode resistance, and sneak

path problems.

Second, NVMMs are increasingly used in distributed

shared memory systems. As the density of NVMMs

is continuously increasing, the main memory capac-

ity can approach hundreds of Terabytes in a single

server. To improve the utilization of large-capacity

NVMMs, it is essential to share them among multi-

ple servers via remote direct memory access (RDMA)

techniques. A typical approach of using NVMMs is to

aggregate all shareable memories from multiple servers

in a hybrid shared memory resource pool, such as Hot-

pot [44, 128, 129]. All memory resources are shared in

a global memory space. There have been a few pre-

liminary studies on using NVMMs in datacenter and

cloud environments [44, 129, 130]. A new trend of

using PM is to manage it as disaggregated memory,

like traditional disaggregated storage systems. This

model is different from the previous shared PM sys-

tems in which the PM DIMMs are distributed in multi-

ple servers and shared by user-level applications. These

computation-memory tightly-coupled architectures has

several drawbacks in terms of manageability, scalabil-

ity, and resource utilization. In contrast, the disag-

gregated PM systems equip a large amount of PM in

a few memory nodes with less computations, can are

connected by computation nodes via high-speed fabric.

This computation/memory disaggregated architecture

can mitigate the above challenges in data center envi-

ronments more easily. However, there still remain a lot

of challenges. For example, the persistent feature of

NVMMs also should be guaranteed in distributed en-

vironments. Traditional PM management instructions

such as clflush and mfence can only guarantee data per-

sistence in a single server, but can not guarantee data

persisting to a remote server over RDMA networks. For

each RDMA operation, once the data arrives to the net-

work interface card (NIC) in the remote server, it issues

an acknowledgment to the data sender. As there are

data buffers in NICs, the data is not stored to the re-

mote NVMM immediately. If a power failure occurs at

this time, data persistence is not guaranteed. Thus, it

is essential to redesign the RDMA protocol to support

flushing primitives. Moreover, the computation nodes

should support remote page swapping which should

be transparent to user-level applications. To support

this mechanism, the traditional virtual memory man-

agement policies should be redesigned. On the other

hand, since PM shows memory-like performance and

are byte-addressable, new designs on memory schedul-

ing and management are required to adapt to disaggre-

gated PM.

Third, NVMM-based computation/memory inte-

grated computer architectures are arising. For ex-

ample, the use of emerging NVMMs in processing-

in-memory (PIM) [92, 93] and near data processing

(NDP) [131, 132] architectures are arising. PIM and

NDP have emerged as new computing paradigms in

recent years. NDP refers to the integration of a pro-

cessor with memory on a single chip so that the com-

putation can access the data in memory as closer

as possible. NDP is able to significantly reduce the

cost of data movement. There are mainly two ap-

proaches to this goal. One is to integrate small com-

putation logics such as (FPGA/ASIC) into memory

chips so that data can be pre-processed before it is

finally fetched to CPUs. Another approach is to in-

tegrate memory units (HBM/HMC) into computation

(CPUs/GPGPUs/FPGAs) . This model is commonly

used by many processor architectures such as Intel Xeon

Phi Knights Landing series, NVIDIA tesla V100, and

26 J. Comput. Sci. & Technol.

Google Tensor Processing Unit (TPU). PIM refers to

processing data entirely in computer memory. It offers

high bandwidth, massive parallelism, and high energy

efficiency by performing computations in main mem-

ory. PIM using NVMMs (such as ReRAM) usually

can compute the bitwise logic of two or more memory

rows in parallel, and support one-step multi-row oper-

ations. This paradigm is particular efficient for matrix-

vector multiplication in an analog computing manner,

and can achieve an extremely large degree of perfor-

mance speedup and energy saving. As a result, PIM

is widely explored in accelerating machine learning al-

gorithms such as convolutional neural networks (CNN)

and deep neural network (DNN). Although there are

growing interests in using NVMM technologies in PIM

architectures [133, 91, 92, 93], current works are mainly

based on electrical simulations, and none of them are

available for mid-scale prototyping.

Fourth, beyond the traditional applications, some

novel applications using NVMMs are emerging. Al-

though NVMM technologies have been preliminarily

adopted in a lot of big data applications, such as K-V

store, graph computing, and machine learning. How-

ever, most of those programming frameworks/models

and runtime systems are designed for disk devices and

DRAM based main memory, they are not effective

and efficient in hybrid memory systems. For example,

buffering and lazy-write mechanisms are widely utilized

in those systems to hide the high latency of I/O opera-

tions. However, those mechanisms may be not needed

in hybrid memory systems and may even hurt applica-

tion performance. These big data processing platforms

such as Hadoop/Spark/GraphChi/Tensorflow should

be redesigned to adapt to the features of NVMM tech-

nologies. Beyond those traditional applications, some

novel applications based on NVMMs are emerging.

For example, there have been a few proposals to use

NVMMs as hardware security primitives such as phys-

ical unclonable functions (PUFs) by exploiting the in-

trinsic variations of NVMM’s switching processes [134].

PUFs are typically used in applications with high secu-

rity requirements, for example, cryptography. Recently,

a number of logic circuits based on NVMM technologies

have been proposed and prototyped [135, 136, 137]. For

example, the ReRAM technology is proposed to use as

reconfigurable switch for ReRAM-based FPGAs [136].

Moreover, the STT-RAM technology is proposed to de-

sign non-volatile cache or registers [138].

8 Conclusions

Emerging NVMM technologies have many good fea-

tures relative to traditional DRAM technologies. They

have a potential to fundamentally change the land-

scape of memory systems and even add new function-

alities and features to the computer systems. There

are vast opportunities to rethink the designs of to-

days’ computer systems to achieve orders of magni-

tude improvement in system performance and energy

consumption. This paper presents a comprehensive

survey of the state-of-the-art works and our practices

from the perspective of memory architecture, OS-level

memory management, and application optimizations.

We also share our vision of future research direc-

tions about NVMM technologies. By taking advan-

tage of the unique features of NVMMs, there are enor-

mous opportunities to innovate the future’s computing

paradigm and develop a lot of diverse novel applications

of NVMMs.

Acknowledgments

This work is supported jointly by National Natural

Science Foundation of China (NSFC) under grants No.

61672251, 61732010, 61825202, 61929103.

A Survey of Non-Volatile Main Memory Technologies 27

References

[1] Ousterhout J, Gopalan A, Gupta A, Kejriwal A,

Lee C, Montazeri B, Ongaro D, Park S J, Qin

H, Rosenblum M, Rumble S, Stutsman R, Yang

S. The RAMCloud storage system. ACM Trans-

actions on Computer Systems (TOCS), 2015,

33(3):1–55.

[2] Zhang H, Chen G, Ooi B C, Tan K L, Zhang M.

In-memory big data management and processing:

A survey. IEEE Transactions on Knowledge and

Data Engineering, July 2015, 27(7):1920–1948.

[3] Malladi K T, Shaeffer I, Gopalakrishnan L, Lo

D, Lee B C, Horowitz M. Rethinking DRAM

power modes for energy proportionality. In Pro-

ceedings of the 45th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MI-

CRO), 2012, pp. 131–142.

[4] Mutlu O. Memory scaling: A systems architec-

ture perspective. In Proceedings of the 5th IEEE

International Memory Workshop, 2013, pp. 21–

25.

[5] Nair P J, Kim D H, Qureshi M K. Archshield: Ar-

chitectural framework for assisting DRAM scal-

ing by tolerating high error rates. In Proceedings

of the 40th Annual International Symposium on

Computer Architecture, 2013, pp. 72–83.

[6] International technology roadmap for semicon-

ductors: Process integration, devices, and struc-

tures. http://www.itrs.net.

[7] Wu X, Reddy A N. SCMFS: A file system for

storage class memory. In Proceedings of the Inter-

national Conference for High Performance Com-

puting, Networking, Storage and Analysis, 2011,

pp. 1–11.

[8] Ahn J, Yoo S, Choi K. DASCA: Dead write

prediction assisted STT-RAM cache architecture.

In Proceedings of the 20th International Sympo-

sium on High Performance Computer Architec-

ture (HPCA), 2014, pp. 25–36.

[9] Wu D, He B, Tang X, Xu J, Guo M. RAMZzz:

Rank-aware DRAM power management with dy-

namic migrations and demotions. In Proceedings

of the International Conference for High Per-

formance Computing, Networking, Storage and

Analysis (SC), 2012, pp. 1–11.

[10] Lu Y, Wu D, He B, Tang X, Xu J, Guo M.

Rank-aware dynamic migrations and adaptive de-

motions for DRAM power management. IEEE

Transactions on Computers, 2015, 65(1):187–202.

[11] Lu Y, He B, Tang X, Guo M. Synergy of dynamic

frequency scaling and demotion on DRAM power

management: Models and optimizations. IEEE

Transactions on Computers, 2015, 64(8):2367–

2381.

[12] Foong A, Hady F. Storage as fast as rest of the

system. In Proceedings of the 8th IEEE Interna-

tional Memory Workshop (IMW), 2016, pp. 1–4.

[13] Poremba M, Zhang T, Xie Y. NVMain 2.0: A

user-friendly memory simulator to model (non-)

volatile memory systems. IEEE Computer Archi-

tecture Letters, 2015, 14(2):140–143.

[14] Sanchez D, Kozyrakis C. ZSim: Fast and accu-

rate microarchitectural simulation of thousand-

core systems. In Proceedings of the 40th Annual

International Symposium on Computer Architec-

ture (ISCA), 2013, pp. 475–486.

[15] HSCC. https://github.com/CGCL-codes/

HSCC.

http://www.itrs.net
https://github.com/CGCL-codes/HSCC
https://github.com/CGCL-codes/HSCC

28 J. Comput. Sci. & Technol.

[16] Dulloor S R, Kumar S, Keshavamurthy A, Lantz

P, Reddy D, Sankaran R, Jackson J. System soft-

ware for persistent memory. In Proceedings of the

9th European Conference on Computer Systems,

2014, pp. 1–15.

[17] Duan Z, Liu H, Liao X, Jin H. HME: A

lightweight emulator for hybrid memory. In Pro-

ceedings of the Design, Automation Test in Eu-

rope Conference and Exhibition (DATE), 2018,

pp. 1375–1380.

[18] Volos H, Magalhaes G, Cherkasova L, Li J.

Quartz: A lightweight performance emulator for

persistent memory software. In Proceedings of the

16th Annual Middleware Conference, 2015, pp.

37–49.

[19] Zhu G, Lu K, Wang X, Zhou X, Shi Z. Build-

ing emulation framework for non-volatile mem-

ory. IEEE Access, 2017, 5:21574–21584.

[20] Dhiman G, Ayoub R, Rosing T. PDRAM: A hy-

brid PRAM and DRAM main memory system. In

Proceedings of the 46th ACM/IEEE Design Au-

tomation Conference, 2009, pp. 664–669.

[21] Yoon H, Meza J, Ausavarungnirun R, Harding

R A, Mutlu O. Row buffer locality aware caching

policies for hybrid memories. In Proceedings of

the 30th IEEE International Conference on Com-

puter Design (ICCD), 2012, pp. 337–344.

[22] Zhang W, Li T. Exploring phase change memory

and 3D die-stacking for power/thermal friendly,

fast and durable memory architectures. In Pro-

ceedings of the 18th International Conference

on Parallel Architectures and Compilation Tech-

niques (PACT), 2009, pp. 101–112.

[23] Ramos L E, Gorbatov E, Bianchini R. Page place-

ment in hybrid memory systems. In Proceedings

of the International Conference on Supercomput-

ing, 2011, pp. 85–95.

[24] Park H, Yoo S, Lee S. Power management of hy-

brid DRAM/PRAM-based main memory. In Pro-

ceedings of the 48th ACM/EDAC/IEEE Design

Automation Conference (DAC), 2011, pp. 59–64.

[25] Lee S, Bahn H, Noh S H. CLOCK-DWF: A

write-history-aware page replacement algorithm

for hybrid PCM and DRAM memory architec-

tures. IEEE Transactions on Computers, 2014,

63(9):2187–2200.

[26] Salkhordeh R, Asadi H. An operating system

level data migration scheme in hybrid DRAM-

NVM memory architecture. In Proceedings of the

Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2016, pp. 936–941.

[27] Khouzani H A, Hosseini F S, Yang C. Seg-

ment and conflict aware page allocation and mi-

gration in DRAM-PCM hybrid main memory.

IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, Sept 2016,

36(9):1458–1470.

[28] Chen D, Jin H, Liao X, Liu H, Guo R, Liu D.

MALRU: Miss-penalty aware LRU-based cache

replacement for hybrid memory systems. In Pro-

ceedings of the Design, Automation & Test in Eu-

rope Conference & Exhibition (DATE), 2017, pp.

1086–1091.

[29] Jin H, Chen D, Liu H, Liao X, Guo R, Zhang

Y. Miss penalty aware cache replacement for

hybrid memory systems. IEEE Transactions

on Computer-Aided Design of Integrated Circuits

and Systems, 2020, pp. 1–14.

A Survey of Non-Volatile Main Memory Technologies 29

[30] Qureshi M K, Srinivasan V, Rivers J A. Scal-

able high performance main memory system us-

ing phase-change memory technology. In Proceed-

ings of the 36th Annual International Symposium

on Computer Architecture (ISCA), 2009, pp. 24–

33.

[31] Mladenov R. An efficient non-volatile main mem-

ory using phase change memory. In Proceedings of

the 13th International Conference on Computer

Systems and Technologies, 2012, pp. 45–51.

[32] Loh G H, Hill M D. Efficiently enabling con-

ventional block sizes for very large die-stacked

DRAM caches. In Proceedings of the 44th An-

nual IEEE/ACM International Symposium on

Microarchitecture, 2011, pp. 454–464.

[33] Meza J, Chang J, Yoon H, Mutlu O, Ran-

ganathan P. Enabling efficient and scalable

hybrid memories using fine-granularity DRAM

cache management. IEEE Computer Architecture

Letters, 2012, 11(2):61–64.

[34] Liu H, Chen Y, Liao X, Jin H, He B, Zheng L,

Guo R. Hardware/software cooperative caching

for hybrid DRAM/NVM memory architectures.

In Proceedings of the International Conference on

Supercomputing (ICS), 2017, pp. 1–10.

[35] Wang X, Liu H, Liao X, Chen J, Jin H, Zhang Y,

Zheng L, He B, Jiang S. Supporting superpages

and lightweight page migration in hybrid memory

systems. ACM Transactions on Architecture and

Code Optimization (TACO), April 2019, 16(2):1–

26.

[36] Wang X, Liu H, Liao X, Jin H, Zhang Y. TLB

coalescing for multi-grained page migration in

hybrid memory systems. IEEE Access, 2020,

8:66304–66314.

[37] Park Y, Park S K, Park K H. Linux kernel sup-

port to exploit phase change memory. In Proceed-

ings of the Linux Symposium, 2010, pp. 217–224.

[38] Wei W, Jiang D, McKee S A, Xiong J, Chen M.

Exploiting program semantics to place data in hy-

brid memory. In Proceedings of the International

Conference on Parallel Architecture and Compi-

lation (PACT), 2015, pp. 163–173.

[39] Condit J, Nightingale E B, Frost C, Ipek E, Lee B,

Burger D, Coetzee D. Better I/O through byte-

addressable, persistent memory. In Proceedings

of the ACM SIGOPS Symposium on Operating

Systems Principles, 2009, pp. 133–146.

[40] Sha E H M, Chen X, Zhuge Q, Shi L, Jiang

W. Designing an efficient persistent in-memory

file system. In Proceedings of the IEEE Non-

Volatile Memory System and Applications Sym-

posium (NVMSA), 2015, pp. 1–6.

[41] Chen X, Sha E H M, Wang X, Yang C, Jiang

W, Zhuge Q. Contour: A process variation

aware wear-leveling mechanism for inodes of per-

sistent memory file systems. IEEE Transactions

on Computers, 2020, pp. 1–1.

[42] Xue D, Huang L, Li C, Wu C. Dapper: An adap-

tive manager for large-capacity persistent mem-

ory. IEEE Transactions on Computers, 2019,

68(7):1019–1034.

[43] Xu J, Swanson S. NOVA: A log-structured

file system for hybrid volatile/non-volatile main

memories. In Proceedings of the 14th Usenix Con-

ference on File and Storage Technologies, 2016,

pp. 323–338.

[44] Yang J, Izraelevitz J, Swanson S. Orion: A dis-

tributed file system for non-volatile main memo-

ries and RDMA-capable networks. In Proceedings

30 J. Comput. Sci. & Technol.

of the 17th USENIX Conference on File and Stor-

age Technologies, 2019, pp. 221–234.

[45] Dong M, Bu H, Yi J, Dong B, Chen H. Per-

formance and protection in the ZoFS user-space

NVM file system. In Proceedings of the 27th

ACM Symposium on Operating Systems Princi-

ples, 2019, pp. 478–493.

[46] Volos H, Tack A J, Swift M M. Mnemosyne:

Lightweight persistent memory. In Proceedings

of the 16th International Conference on Archi-

tectural Support for Programming Languages and

Operating Systems, 2011, pp. 91–104.

[47] Venkataraman S, Tolia N, Ranganathan P,

Campbell R H. Consistent and durable data

structures for non-volatile byte-addressable mem-

ory. In Proceedings of the 9th USENIX Confer-

ence on File and Stroage Technologies (FAST),

2011, pp. 5–5.

[48] Coburn J, Caulfield A M, Akel A, Grupp L M,

Gupta R K, Jhala R, Swanson S. NV-Heaps:

Making persistent objects fast and safe with next-

generation, non-volatile memories. In Proceedings

of the 16th International Conference on Archi-

tectural Support for Programming Languages and

Operating Systems, 2011, pp. 105–118.

[49] Liu R S, Shen D Y, Yang C L, Yu S C, Wang

C Y M. NVM Duet: Unified working memory

and persistent store architecture. In Proceedings

of the 19th International Conference on Archi-

tectural Support for Programming Languages and

Operating Systems, 2014, pp. 455–470.

[50] Denny J E, Lee S, Vetter J S. NVL-C: Static

analysis techniques for efficient, correct program-

ming of non-volatile main memory systems. In

Proceedings of the 25th ACM International Sym-

posium on High-Performance Parallel and Dis-

tributed Computing, 2016, pp. 125–136.

[51] Zhang L, Swanson S. Pangolin: A fault-tolerant

persistent memory programming library. In Pro-

ceedings of the USENIX Annual Technical Con-

ference (USENIX ATC), July 2019, pp. 897–912.

[52] Krishnan R M, Kim J, Mathew A, Fu X, Demeri

A, Min C, Kannan S. Durable transactional mem-

ory can scale with timestone. In Proceedings of the

Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and

Operating Systems, 2020, pp. 335–349.

[53] Gu J, Yu Q, Wang X, Wang Z, Zang B, Guan H,

Chen H. Pisces: A scalable and efficient persis-

tent transactional memory. In Proceedings of the

USENIX Annual Technical Conference (USENIX

ATC), 2019, pp. 913–928.

[54] Wu M, Zhao Z, Li H, Li H, Chen H, Zang B, Guan

H. Espresso: Brewing java for more non-volatility

with non-volatile memory. In Proceedings of the

Twenty-Third International Conference on Archi-

tectural Support for Programming Languages and

Operating Systems, 2018, pp. 70–83.

[55] Seok H, Park Y, Park K W, Park K H. Ef-

ficient page caching algorithm with prediction

and migration for a hybrid main memory. ACM

SIGAPP Applied Computing Review, December

2011, 11(4):38–48.

[56] Hirofuchi T, Takano R. RAMinate: Hypervisor-

based virtualization for hybrid main memory sys-

tems. In Proceedings of the 7th ACM Symposium

on Cloud Computing, 2016, pp. 112–125.

[57] Duan Z, Liu H, Liao X, Jin H, Jiang W, Zhang

Y. HiNUMA: NUMA-aware data placement and

A Survey of Non-Volatile Main Memory Technologies 31

migration in hybrid memory systems. In Pro-

ceedings of the IEEE International Conference on

Computer Design (ICCD), 2019, pp. 367–375.

[58] Dang Y, Haikun L, Hai J, Yu Z. HMvisor: Dy-

namic hybrid memory management for virtual

machines. SCIENCE CHINA Information Sci-

ences, 2020.

[59] Wang Z, Shan S, Cao T, Gu J, Xu Y, Mu S, Xie

Y, Jiménez D A. WADE: Writeback-aware dy-

namic cache management for NVM-based main

memory system. ACM Transactions on Architec-

ture and Code Optimization (TACO), December

2013, 10(4):1–21.

[60] Hu J, Xue C J, Zhuge Q, Tseng W C, Sha E H M.

Towards energy efficient hybrid on-chip scratch

pad memory with non-volatile memory. In Pro-

ceedings of the Design, Automation & Test in Eu-

rope Conference & Exhibition (DATE), 2011, pp.

1–6.

[61] Cho S, Lee H. Flip-N-Write: A simple determin-

istic technique to improve PRAM write perfor-

mance, energy and endurance. In Proceedings of

the 42nd Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), 2009, pp.

347–357.

[62] Li Y, Li X, Ju L, Jia Z. A three-stage-write

scheme with flip-bit for PCM main memory. In

Proceedings of the 20th Asia and South Pacific

Design Automation Conference, 2015, pp. 328–

333.

[63] Li Z, Wang F, Feng D, Hua Y, Tong W, Liu J,

Liu X. Tetris write: Exploring more write par-

allelism considering PCM asymmetries. In Pro-

ceedings of the 45th International Conference on

Parallel Processing (ICPP), 2016, pp. 159–168.

[64] Palangappa P M, Mohanram K. CompEx:

Compression-Expansion coding for energy, la-

tency, and lifetime improvements in MLC/TLC

NVM. In Proceedings of the IEEE International

Symposium on High Performance Computer Ar-

chitecture (HPCA), 2016, pp. 90–101.

[65] Chen Y T, Cong J, Huang H, Liu B, Liu C,

Potkonjak M, Reinman G. Dynamically recon-

figurable hybrid cache: An energy-efficient last-

level cache design. In Proceedings of the Design,

Automation & Test in Europe Conference & Ex-

hibition (DATE), 2012, pp. 45–50.

[66] Liu J, Jaiyen B, Veras R, Mutlu O. RAIDR:

Retention-aware intelligent DRAM refresh. In

Proceedings of the 39th Annual International

Symposium on Computer Architecture, 2012, pp.

1–12.

[67] Lee D, Kim Y, Seshadri V, Liu J, Subramanian

L, Mutlu O. Tiered-latency DRAM: A low la-

tency and low cost DRAM architecture. In Pro-

ceedings of the 19th IEEE International Sympo-

sium on High Performance Computer Architec-

ture (HPCA), 2013, pp. 615–626.

[68] David H, Fallin C, Gorbatov E, Hanebutte U R,

Mutlu O. Memory power management via dy-

namic voltage/frequency scaling. In Proceedings

of the 8th ACM International Conference on Au-

tonomic Computing, 2011, pp. 31–40.

[69] Pourshirazi B, Zhu Z. Refree: A refresh-free

hybrid DRAM/PCM main memory system. In

Proceedings of the IEEE International Parallel

and Distributed Processing Symposium (IPDPS),

2016, pp. 566–575.

32 J. Comput. Sci. & Technol.

[70] Hay A, Strauss K, Sherwood T, Loh G H, Burger

D. Preventing PCM banks from seizing too

much power. In Proceedings of the 44th An-

nual IEEE/ACM International Symposium on

Microarchitecture, 2011, pp. 186–195.

[71] Zhao J, Li S, Yoon D H, Xie Y, Jouppi N P. Kiln:

Closing the performance gap between systems

with and without persistence support. In Pro-

ceedings of the 46th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, 2013, pp.

421–432.

[72] Awad A, Blagodurov S, Solihin Y. Write-aware

management of NVM-based memory extensions.

In Proceedings of the International Conference on

Supercomputing, 2016, pp. 1–12.

[73] Zhang L, Neely B, Franklin D, Strukov D, Xie Y,

Chong F T. Mellow writes: Extending lifetime

in resistive memories through selective slow write

backs. In Proceedings of the 43rd ACM/IEEE An-

nual International Symposium on Computer Ar-

chitecture (ISCA), 2016, pp. 519–531.

[74] Qureshi M K, Karidis J, Franceschini M, Srini-

vasan V, Lastras L, Abali B. Enhancing life-

time and security of PCM-based main memory

with start-gap wear leveling. In Proceedings of

the 42nd Annual IEEE/ACM International Sym-

posium on Microarchitecture, 2009, pp. 14–23.

[75] Azevedo R, Davis J D, Strauss K, Gopalan P,

Manasse M, Yekhanin S. Zombie memory: Ex-

tending memory lifetime by reviving dead blocks.

In Proceedings of the 40th Annual International

Symposium on Computer Architecture, 2013, pp.

452–463.

[76] Ipek E, Condit J, Nightingale E B, Burger D,

Moscibroda T. Dynamically replicated memory:

Building reliable systems from nanoscale resistive

memories. ACM Sigplan Notices, 2010, 45(3):3–

14.

[77] Jin H, Li Z, Liu H, Liao X, Zhang Y.

Hotspot-aware hybrid memory management for

in-memory key-value stores. IEEE Transac-

tions on Parallel and Distributed Systems, 2020,

31(4):779–792.

[78] Zhou J, Shen Y, Li S, Huang L. NVHT: An ef-

ficient key-value storage library for non-volatile

memory. In Proceedings of the 3rd IEEE/ACM

International Conference on Big Data Comput-

ing, Applications and Technologies, 2016, pp.

227–236.

[79] Li W, Jiang D, Xiong J, Bao Y. HiLSM: An LSM-

based key-value store for hybrid NVM-SSD stor-

age systems. In Proceedings of the 17th ACM In-

ternational Conference on Computing Frontiers,

2020, pp. 208–216.

[80] Eisenman A, Gardner D, AbdelRahman I, Axboe

J, Dong S, Hazelwood K, Petersen C, Cidon A,

Katti S. Reducing DRAM footprint with NVM

in facebook. In Proceedings of the Thirteenth Eu-

roSys Conference, 2018, pp. 1–13.

[81] Kim J, Lee S, Vetter J S. PapyrusKV: A

high-performance parallel key-value store for dis-

tributed NVM architectures. In Proceedings of the

International Conference for High Performance

Computing, Networking, Storage and Analysis,

2017.

[82] Arulraj J. Data management on non-volatile

memory. In Proceedings of the 2019 Interna-

tional Conference on Management of Data, 2019,

p. 1114.

A Survey of Non-Volatile Main Memory Technologies 33

[83] Lersch L, Hao X, Oukid I, Wang T, Willhalm

T. Evaluating persistent memory range in-

dexes. Proc. VLDB Endowment, December 2019,

13(4):574–587.

[84] Lu B, Hao X, Wang T, Lo E. Dash: Scalable

hashing on persistent memory. Proc. VLDB En-

dow., April 2020, 13(10):1147–1161.

[85] Mahapatra P, Hill M D, Swift M M. Don’t persist

all: Efficient persistent data structures. CoRR,

2019, abs/1905.13011.

[86] Ni Y, Chen S, Lu Q, Litz H, Zhu P, Miller E L, Wu

J. Closing the performance gap between DRAM

and PM for in-memory index structures. Techni-

cal Report UCSC-SSRC-20-01, University of Cal-

ifornia, Santa Cruz, May 2020.

[87] Chen Y, Lu Y, Yang F, Wang Q, Wang Y, Shu

J. Flatstore: An efficient log-structured key-value

storage engine for persistent memory. In Pro-

ceedings of the Twenty-Fifth International Con-

ference on Architectural Support for Program-

ming Languages and Operating Systems (ASP-

LOS), 2020, pp. 1077–1091.

[88] Liu W, Liu H, Liao X, Jin H, Zhang Y. NGraph:

Parallel graph processing in hybrid memory sys-

tems. IEEE Access, 2019, 7:103517–103529.

[89] Malicevic J, Dulloor S, Sundaram N, Satish N,

Jackson J, Zwaenepoel W. Exploiting NVM in

large-scale graph analytics. In Proceedings of the

3rd Workshop on Interactions of NVM/FLASH

with Operating Systems and Workloads, 2015, pp.

1–9.

[90] Gill G, Dathathri R, Hoang L, Peri R, Pin-

gali K. Single machine graph analytics on

massive datasets using Intel Optane DC persis-

tent memory. Proc. VLDB Endow., April 2020,

13(10):1304–1318.

[91] Long Y, She X, Mukhopadhyay S. Design of reli-

able DNN accelerator with un-reliable ReRAM.

In Proceedings of the Design, Automation &

Test in Europe Conference & Exhibition (DATE),

2019, pp. 1769–1774.

[92] Li S, Xu C, Zou Q, Zhao J, Lu Y, Xie Y.

Pinatubo: A processing-in-memory architecture

for bulk bitwise operations in emerging non-

volatile memories. In Proceedings of the 53rd An-

nual Design Automation Conference, 2016, pp. 1–

6.

[93] Han L, Shen Z, Liu D, Shao Z, Huang H H, Li T.

A novel ReRAM-based processing-in-memory ar-

chitecture for graph traversal. ACM Transactions

on Storage (TOS), February 2018, 14(1):1–26.

[94] Intel Optane DIMM. https:

//www.tomshardware.com/reviews/

intel-cascade-lake-xeon-optane,6061-3.

html.

[95] Agarwal N, Wenisch T F. Thermostat:

Application-transparent page management for

two-tiered main memory. In Proceedings of the

Twenty-Second International Conference on Ar-

chitectural Support for Programming Languages

and Operating Systems, 2017, pp. 631–644.

[96] Coburn J, Caulfield A M, Akel A, Grupp L M,

Gupta R K, Jhala R, Swanson S. NV-Heaps:

Making persistent objects fast and safe with

next-generation, non-volatile memories. ACM

SIGARCH Computer Architecture News, 2011,

39(1):105–118.

https://www.tomshardware.com/reviews/intel-cascade-lake-xeon-optane,6061-3.html
https://www.tomshardware.com/reviews/intel-cascade-lake-xeon-optane,6061-3.html
https://www.tomshardware.com/reviews/intel-cascade-lake-xeon-optane,6061-3.html
https://www.tomshardware.com/reviews/intel-cascade-lake-xeon-optane,6061-3.html

34 J. Comput. Sci. & Technol.

[97] Volos H, Tack A J, Swift M M. Mnemosyne:

Lightweight persistent memory. ACM SIGPLAN

Not., March 2011, 47(4):91–104.

[98] Chakrabarti D R, Boehm H J, Bhandari K. Atlas:

Leveraging locks for non-volatile memory consis-

tency. ACM SIGPLAN Notices, October 2014,

49(10):433–452.

[99] Yang J, Kim J, Hoseinzadeh M, Izraelevitz J,

Swanson S. An empirical guide to the behavior

and use of scalable persistent memory. In Proceed-

ings of the 18th USENIX Conference on File and

Storage Technologies (FAST), February 2020, pp.

169–182.

[100] Zilberberg O, Weiss S, Toledo S. Phase-change

memory: An architectural perspective. ACM

Computing Surveys (CSUR), July 2013, 45(3):1–

33.

[101] Wu C, Zhang G, Li K. Rethinking computer

architectures and software systems for phase-

change memory. ACM Journal on Emerg-

ing Technologies in Computing Systems (JETC),

May 2016, 12(4):1–40.

[102] Boukhobza J, Rubini S, Chen R, Shao Z. Emerg-

ing NVM: A survey on architectural integration

and research challenges. ACM Transactions on

Design Automation of Electronic Systems (TO-

DAES), November 2017, 23(2):1–32.

[103] Mittal S, Vetter J S. A survey of software tech-

niques for using non-volatile memories for stor-

age and main memory systems. IEEE Transac-

tions on Parallel and Distributed Systems, 2016,

27(5):1537–1550.

[104] Li Y, Ghose S, Choi J, Sun J, Wang H, Mutlu

O. Utility-based hybrid memory management. In

Proceedings of the IEEE International Conference

on Cluster Computing (CLUSTER), Sept 2017,

pp. 152–165.

[105] Gandhi J, Basu A, Hill M D, Swift M M. Badger-

Trap: A tool to instrument x86-64 TLB misses.

ACM SIGARCH Computer Architecture News,

September 2014, 42(2):20–23.

[106] Chen C H, Hsiu P C, Kuo T W, Yang C L, Wang

C Y M. Age-based PCM wear leveling with nearly

zero search cost. In Proceedings of the 49th An-

nual Design Automation Conference, 2012, pp.

453–458.

[107] Gao S, He B, Xu J. Real-time in-memory check-

pointing for future hybrid memory systems. In

Proceedings of the 29th ACM on International

Conference on Supercomputing, 2015, pp. 263–

272.

[108] Islam N S, Rahman M, Lu X, Panda D K.

High performance design for HDFS with byte-

addressability of NVM and RDMA. In Proceed-

ings of the International Conference on Super-

computing, 2016, pp. 1–14.

[109] Knyaginin D, Gaydadjiev G N, Stenstrom P.

Crystal: A design-time resource partitioning

method for hybrid main memory. In Proceedings

of the 43rd International Conference on Parallel

Processing, 2014, pp. 90–100.

[110] Yang J, Wei Q, Wang C, Chen C, Yong K L, He

B. NV-tree: A consistent and workload-adaptive

tree structure for non-volatile memory. IEEE

Transactions on Computers, 2016, 65(7):2169–

2183.

[111] Arulraj J, Levandoski J, Minhas U F, Larson P A.

Bztree: A high-performance latch-free range in-

A Survey of Non-Volatile Main Memory Technologies 35

dex for non-volatile memory. Proc. VLDB En-

dow., January 2018, 11(5):553–565.

[112] Intel architecture instruction set exten-

sions programing reference. https:

//software.intel.com/sites/default/

files/managed/0d/53/319433-022.pdf.

[113] Ma K, Zheng Y, Li S, Swaminathan K, Li X, Liu

Y, Sampson J, Xie Y, Narayanan V. Architec-

ture exploration for ambient energy harvesting

nonvolatile processors. In Proceedings of the 21st

IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), 2015, pp.

526–537.

[114] Add support for NV-DIMMs to ext4. https:

//lwn.net/Articles/613384/.

[115] Zhu T, Hu H, Qian W, Zhou H, Zhou A. Fault-

tolerant precise data access on distributed log-

structured merge-tree. Frontiers of Computer

Science, 2019, 13(4):760–777.

[116] Doshi K, Giles E, Varman P. Atomic persistence

for SCM with a non-intrusive backend controller.

In Proceedings of the IEEE International Sympo-

sium on High Performance Computer Architec-

ture (HPCA), 2016, pp. 77–89.

[117] Olson M A, Bostic K, Seltzer M I. Berkeley DB.

In Proceedings of the USENIX Annual Technical

Conference (USENIX ATC), 1999, pp. 183–191.

[118] Sears R, Brewer E. Stasis: Flexible transactional

storage. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation,

2006, pp. 29–44.

[119] Izraelevitz J, Yang J, Zhang L, Kim J, Liu X,

Memaripour A, Soh Y J, Wang Z, Xu Y, Dul-

loor S R, Zhao J, Swanson S. Basic performance

measurements of the Intel Optane DC persistent

memory module, 2019.

[120] Patil O, Ionkov L, Lee J, Mueller F, Lang M. Per-

formance characterization of a DRAM-NVM hy-

brid memory architecture for HPC applications

using Intel Optane DC persistent memory mod-

ules. In Proceedings of the International Sympo-

sium on Memory Systems, 2019, pp. 288–303.

[121] Weiland M, Brunst H, Quintino T, Johnson N,

Iffrig O, Smart S, Herold C, Bonanni A, Jackson

A, Parsons M. An early evaluation of Intel’s Op-

tane DC persistent memory module and its im-

pact on high-performance scientific applications.

In Proceedings of the International Conference for

High Performance Computing, Networking, Stor-

age and Analysis, 2019, pp. 1–19.

[122] Peng I B, Gokhale M B, Green E W. System

evaluation of the Intel Optane byte-addressable

NVM. In Proceedings of the International Sym-

posium on Memory Systems (MEMSYS), 2019,

pp. 304–315.

[123] Zhou Y, Philbin J, Li K. The multi-queue replace-

ment algorithm for second level buffer caches. In

Proceedings of the General Track: 2001 USENIX

Annual Technical Conference, 2001, pp. 91–104.

[124] Liu H, Liu R, Liao X, Jin H, He B, Zhang Y.

Object-level memory allocation and migration in

hybrid memory systems. IEEE Transactions on

Computers, 2020, 69(9):1401–1413.

[125] Hassan A, Vandierendonck H, Nikolopoulos

D S. Software-managed energy-efficient hybrid

DRAM/NVM main memory. In Proceedings of

the 12th ACM International Conference on Com-

puting Frontiers (CF), 2015, pp. 23:1–23:8.

https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://lwn.net/Articles/613384/
https://lwn.net/Articles/613384/

36 J. Comput. Sci. & Technol.

[126] Hu X, Wang X, Li Y, Zhou L, Luo Y, Ding C,

Jiang S, Wang Z. LAMA: Optimized locality-

aware memory allocation for key-value cache.

In Proceedings of the USENIX Annual Technical

Conference (USENIX ATC), 2015, pp. 57–69.

[127] Yu S, Chen P Y. Emerging memory technologies:

Recent trends and prospects. IEEE Solid-State

Circuits Magazine, 2016, 8(2):43–56.

[128] Lu Y, Shu J, Chen Y, Li T. Octopus: an RDMA-

enabled distributed persistent memory file sys-

tem. In Proceedings of the USENIX Annual Tech-

nical Conference (USENIX ATC), 2017, pp. 773–

785.

[129] Shan Y, Tsai S Y, Zhang Y. Distributed shared

persistent memory. In Proceedings of the 2017

Symposium on Cloud Computing, 2017, pp. 323–

337.

[130] Tingting C, Haikun L, Xiaofei L, Hai J. Resource

abstraction and data placement for distributed

hybrid memory pool. Frontiers of Computer Sci-

ence, 2020, pp. 1–15.

[131] Barbalace A, Iliopoulos A, Rauchfuss H, Brasche

G. It’s time to think about an operating system

for near data processing architectures. In Pro-

ceedings of the 16th Workshop on Hot Topics in

Operating Systems, 2017, pp. 56–61.

[132] Gu B, Yoon A S, Bae D H, Jo I, Lee J, Yoon

J, Kang J U, Kwon M, Yoon C, Cho S, Jeong

J, Chang D. Biscuit: A framework for near-

data processing of big data workloads. In Pro-

ceedings of the 43rd International Symposium on

Computer Architecture, 2016, pp. 153–165.

[133] Yan H, Ahn E C, Duan L. Enabling NVM-based

deep learning acceleration using nonuniform data

quantization: Work-in-progress. In Proceedings

of the 2017 International Conference on Com-

pilers, Architectures and Synthesis for Embedded

Systems Companion, 2017, pp. 1–20.

[134] Chen A. Utilizing the variability of resistive ran-

dom access memory to implement reconfigurable

physical unclonable functions. IEEE Electron De-

vice Letters, 2015, 36(2):138–140.

[135] Torres L, Brum R M, Cargnini L V, Sassatelli G.

Trends on the application of emerging nonvolatile

memory to processors and programmable devices.

In Proceedings of the IEEE International Sympo-

sium on Circuits and Systems (ISCAS), 2013, pp.

101–104.

[136] Liauw Y Y, Zhang Z, Kim W, El Gamal A, Wong

S S. Nonvolatile 3D-FPGA with monolithically

stacked RRAM-based configuration memory. In

Proceedings of the 2012 IEEE International Solid-

State Circuits Conference, 2012, pp. 406–408.

[137] Zhao W, Belhaire E, Chappert C, Mazoyer P.

Spin transfer torque (STT)-MRAM–based run-

time reconfiguration FPGA circuit. ACM Trans.

Embed. Comput. Syst., October 2009, 9(2):1–16.

[138] Chen Y, Wong W F, Li H, Koh C K, Zhang Y,

Wen W. On-chip caches built on multilevel spin-

transfer torque RAM cells and its optimizations.

ACM Journal on Emerging Technologies in Com-

puting Systems (JETC), May 2013, 9(2):1–22.

	1 Introduction
	2 Hybrid Memory Architectures
	2.1 Horizontal Hybrid Memory Architectures
	2.2 Hierarchical Hybrid Memory Architectures
	2.3 Architectures of Intel Optane DCPMM
	2.4 Summary

	3 Persistent Memory Management
	3.1 Technical Challenges
	3.2 Working Memory
	3.3 Persistent Memory File System
	3.3.1 Write Order Guarantee
	3.3.2 Atomic Updating

	3.4 Persistent Objects
	3.5 Studies on Intel Optane DCPMMs

	4 Performance Improvement and Energy Saving
	4.1 NVMM Write Reduction
	4.2 NVMM Energy Consumption Reduction
	4.3 DRAM Energy Consumption Reduction

	5 Write Endurance Improvement
	5.1 Write Reduction
	5.2 Wear-Leveling

	6 Practices of Hybrid Memory System Designs
	6.1 Memory Architectural Designs
	6.1.1 Hybrid Memory Architectural Simulation
	6.1.2 Lightweight NVMM Performance Emulator
	6.1.3 Hardware/Software Cooperative Caching

	6.2 System Software for Hybrid Memories
	6.2.1 Object Migration in Hybrid Memory Systems
	6.2.2 NUMA-aware Hybrid Memory Management
	6.2.3 Supporting Superpages in Hybrid Memory Systems
	6.2.4 NVMM Management in Virtual Machines

	6.3 NVMM-supported Applications

	7 Future Research Directions
	8 Conclusions

