
1

Operating Systems: 

Lecture 7

Synchronization Tools

Jinwoo Kim 
jwkim@jjay.cuny.edu



2

Chapter 6: Process Synchronization

• Background

• The Critical-Section Problem

• Peterson’s Solution

• Synchronization Hardware

• Mutex Locks

• Semaphores

• Monitors



Objectives

• To present the concept of process synchronization

• To introduce the critical-section problem, whose 
solutions can be used to ensure the consistency 
of shared data

• To present both software and hardware solutions 
of the critical-section problem

• To examine several classical process-
synchronization problems

• To explore several tools that are used to solve 
process synchronization problems
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Background

• Processes can execute concurrently

– May be interrupted at any time, partially completing execution

• Concurrent access to shared data may result in data inconsistency

• Maintaining data consistency requires mechanisms to ensure the 
orderly execution of cooperating processes

• Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers

– We can do so by having an integer count that keeps track of the 
number of full buffers

– Initially, count is set to 0

– It is incremented by the producer after it produces a new buffer and is 
decremented by the consumer after it consumes a buffer
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Producer 

while (true) {

/*  produce an item and put in nextProduced */

while (count == BUFFER_SIZE)

; // do nothing

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}   
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Consumer

while (true)  {

while (count == 0)

; // do nothing

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/*  consume the item in nextConsumed  */

}
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Race Condition

• count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

• count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}



Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

– Process may be changing common variables, updating 
table, writing file, etc

– When one process in critical section, no other may be in its 
critical section

• Critical section problem is to design protocol to solve this

• Each process must ask permission to enter critical section in 
entry section, may follow critical section with exit section, 
then remainder section



Critical Section

• General structure of process Pi  



Algorithm for Process Pi

do { 

while (turn == j); 

critical section 

turn = j; 

remainder section 

} while (true); 
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Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections

2. Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the 
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its 
critical section and before that request is granted
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Critical-Section Handling in OS 

• Assume that each process executes at a nonzero speed

– No assumption concerning relative speed of the N processes

• Two approaches depending on if kernel is preemptive or non-
preemptive 

– Preemptive – allows preemption of process when running in kernel 
mode

– Non-preemptive – runs until exits kernel mode, blocks, or 
voluntarily yields CPU
– Essentially free of race conditions in kernel mode
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Peterson’s Solution

• Classic software-based solution

– Limited to 2 processes

– Assume that the LOAD and STORE machine-language 
instructions are atomic

– cannot be interrupted

• The two processes share two variables:

– int turn; 

– boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical 
section

• The flag array is used to indicate if a process is ready to enter 
the critical section

– flag[i] == true implies that process Pi is ready!
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Algorithm for Process Pi

while (true) {

flag[ i ] = TRUE;

turn = j;

while  (flag[ j ]  &&  turn == j);

CRITICAL SECTION

flag[ i ] = FALSE;

REMAINDER SECTION

}



Peterson’s Solution (Cont.)

• Provable that the three  CS requirement are met:

1.   Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = I

2.   Progress requirement is satisfied

3.   Bounded-waiting requirement is met
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Synchronization Hardware

• Many systems provide hardware support for critical section code

• All solutions below based on idea of locking

– Protecting critical regions via locks

• Uniprocessors – could disable interrupts

– Currently running code would execute without preemption

– Generally too inefficient on multiprocessor systems
– Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions

– Atomic == non-interruptable

– Example
– test memory word and set value

– swap contents of two memory words



Solution to Critical-section Problem Using Locks

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 
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TestAndndSet Instruction 

• Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”
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Solution using TestAndSet( )

• Shared boolean variable lock

– initialized to FALSE

• Solution:

while (true) {

while ( TestAndSet (&lock ))

;   /* do nothing

//    critical section

lock = FALSE;

//      remainder section 

}
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Bounded-waiting TestAndSet( )

while (true) {

waiting[ i ] = TRUE;

key = TRUE;

while ( wating[ i ] && key)

key = TestAndSet (&lock );

waiting[ i ] = FALSE;

//    critical section

j = (i + 1) % n;

while ((j != i) && !wating[ j ])

j = (j + 1) % n;

if (j == i) 

lock = FALSE;

else

waiting[ j ] = FALSE;

//    remainder section 

}
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CompareAndSwap  Instruction

• Definition:

void CompareAndSwap (int *value, int expected, int newValue){

int temp = *value;

if (*value == expected)

*value = newValue;

return temp;

}

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set  the variable “value”  the value of the passed parameter 
“new_value” but only if “value” ==“expected”. That is, the 
swap takes place only under this condition.
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Solution using CompareAndSwap

• Shared integer variable lock 

– initialized to 0

• Solution:

while (true)  {

while ( CompareAndSwap(&lock, 0, 1) != 0)

;     // do nothing

//    critical section

lock = 0;

//      remainder section 

}



Mutex Locks

• Previous solutions are complicated and generally inaccessible to 
application programmers

• OS designers build software tools to solve critical section problem

• Simplest is mutex lock

• Protect a critical section  by first acquire() a lock then 
release() the lock

 Boolean variable indicating if lock is available or not

• Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions

• But this solution requires busy waiting

 This lock therefore called a spinlock



acquire() and release()

• acquire() {

while (!available) 

; /* busy wait */ 

available = false; 

} 

• release() { 

available = true; 

} 

• do { 

acquire lock

critical section

release lock 

remainder section 

} while (true); 
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Semaphore

• Synchronization tool that provides more sophisticated ways (than 
Mutex locks)  for process to synchronize their activities 

• Semaphore S – integer variable

• Two standard operations modify S: wait() and signal()

– Originally called P() and V()

• Can only be accessed via two indivisible (atomic) operations

– wait (S) { 

while S <= 0

; // busy wait

S--;

}

– signal (S) { 

S++;

}



26

Semaphore as General Synchronization Tool

• Counting semaphore

– integer value can range over an unrestricted domain

• Binary semaphore

– integer value can range only between 0 and 1

– Same as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore S;    //  initialized to 1

wait (S);

Critical Section

signal (S);
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Semaphore Implementation

• Must guarantee that no two processes can execute wait() and 
signal() on the same semaphore at the same time

• Thus, implementation becomes the critical section problem 
where the wait and signal code are placed in the critical 
section

– Could now have busy waiting in critical section implementation
– But implementation code is short

– Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical 
sections and therefore this is not a good solution
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Semaphore Implementation with no Busy waiting

• With each semaphore, there is an associated waiting queue

– Each entry in a waiting queue has two data items:
– value (of type integer)

– pointer to next record in the list

• Two operations:

– block
– place the process invoking the operation on the appropriate waiting queue

– wakeup 
– remove one of processes in the waiting queue and place it in the ready queue



29

Semaphore Implementation with no Busy waiting (Cont.)

• Implementation of wait:

wait (S){ 

value--;

if (value < 0) { 

add this process to waiting queue

block();  }

}

• Implementation of signal:

Signal (S){ 

value++;

if (value <= 0) { 

remove a process P from the waiting queue

wakeup(P);  }

}
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Semaphore Usage for Synchronization

• When we need to execute S1 in P1 before S2 in P2

– Use a common semaphore synch
– Initialized to 0

In Process 1

S1;

signal(synch);

In Process 2

wait(synch);

S2;
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Deadlock and Starvation

• Deadlock

– two or more processes are waiting indefinitely for an event that 
can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal (S); signal (Q);

signal (Q); signal (S);
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Deadlock and Starvation (Cont.)

• Starvation

– indefinite blocking

– A process may never be removed from the semaphore queue in 
which it is suspended



Problems with Semaphores

• Incorrect use of semaphore operations:

– signal (mutex)  ….  wait (mutex)

– wait (mutex)  …  wait (mutex)

– Omitting  of wait (mutex) or signal (mutex) (or both)

• Deadlock and starvation are possible



34

Monitors

• A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

• Abstract data type, internal variables only accessible by code 
within the procedure

• Only one process may be active within the monitor at a time

• But not powerful enough to model some synchronization 
schemes

monitor monitor-name {

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code ( ….) { … }

…

}

}
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Schematic view of a Monitor



Condition Variables

• condition x, y;

• Two operations are allowed on a condition variable:

– x.wait() – a process that invokes the operation is 
suspended until x.signal() 

– x.signal() – resumes one of processes (if any) that
invoked x.wait()

– If no x.wait() on the variable, then it has no effect on the variable



Monitor with Condition Variables



Condition Variables Choices

• If process P invokes x.signal(), and process Q is suspended 
in x.wait(), what should happen next?

– Both Q and P cannot execute in parallel

– If Q is resumed, then P must wait

• Options include

– Signal and wait – P waits until Q either leaves the monitor or it waits 
for another condition

– Signal and continue – Q waits until P either leaves the monitor or it  
waits for another condition

– Both have pros and cons – language implementer can decide

– Monitors implemented in Concurrent Pascal compromise
– P executing signal immediately leaves the monitor, Q is resumed

– Implemented in other languages including Mesa, C#, Java



Monitor Implementation Using Semaphores

• Variables 
semaphore mutex;  // (initially  = 1)

semaphore next;   // (initially  = 0)

int next_count = 0;

• Each procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else 

signal(mutex);

• Mutual exclusion within a monitor is ensured



Monitor Implementation – Condition Variables

• For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)

int x_count = 0;

• The operation x.wait can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;



Monitor Implementation (Cont.)

• The operation x.signal can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}



Resuming Processes within a Monitor

• If several processes queued on condition x, and x.signal() 
executed, which should be resumed?

• FCFS frequently not adequate 

• conditional-wait construct of the form x.wait(c)

– Where c is priority number

– Process with lowest number (highest priority) is scheduled next



• Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  
plans to use the resource

R.acquire(t);

...

access the resurce;

...

R.release;

• Where R is an instance of  type ResourceAllocator

Single Resource allocation 



A Monitor to Allocate Single Resource

monitor ResourceAllocator

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}


