COLLEGE

CRIMINAL
JUSTICE

i

Operating Systems:
Lecture 4

Basic Multithreaded Programming

Jinwoo Kim
jwkim@)jjay.cuny.edu

Overview

COI.LEGE

CRIMINAL
JUSTICE

i

e What is multithreaded programming?
e \Why do you need it?

e Basics of multithreaded programming and example
codes

1

Basic Concept

COLLEGE

CRIMINAI.
JUSTICE

e The Operating System that you use was probably
written with the idea of threads, or processes in
mind

— You can run programs of your choosing

e A process is a running program, and a program is a
set of instructions that the machine can understand

e You can run more than one process at a time

— When you open up separate programs, they run as
processes in their own separate memory space

— Each program running has a chunk of memory to which it
and only it can use

— That's how many programs can run without changing
variables and states of other running programs

Basic Concept (Continued)

COLLEGE

CRIMINAI.
JUSTICE

1

e Imagine for a second what it would be like to run a

program in the same memory space as another
running process

e This process running inside of another processes'
memory space is called a “Thread”

— A thread is a path of execution

— A process requires at least one thread but it may contain
more than one threads

— If the process is closed, all the threads in the process are
Killed automatically

Benefits of Threads

COLLEGE

CRlMINAI.
JUSTICE

o Efficient
— The multithreaded application uses CPU 100% effectively

1

e Economical

— When we create a process, it will take memory space

— Multithreaded application shares the same process
memory space

— Every thread contains stack

— So the thread takes up less memory usage compared to a
process

How does a Thread work?

COI.LEGE

CRIMINAL
JUSTICE

i

e The Operating System has a scheduler for each
thread (process) that is currently running

e |t divides up time slices for each of them which are
executed in the order that the Operating System
seems fit

e |t simply runs each one in some arbitrary order for a
set number of milliseconds and then switches
between them constantly

Is it fast?

CUI.LEGE

CRIMINAL
JUSTICE

i

e Of course! One way to think about it is like this: The
more processes that your program has running, the
more time that your program can get from the
system

e The switches from one thread to another (or from
one process to another) happens so quickly that the
entire system seems to be doing many different
things at once!

Is there a lot of overhead involved?

COLLEGE

CRIMINAL
JUSTICE

1

e Not much
— Compared to multiple processes

e \We will see from example code

— A simple application that creates 3 threads and runs them
simultaneously

i

“ Example code

COLLEGE

CRIMINAI.
JUSTICE

// First, always include <windows.h> for all the Windows specific thread
information

#include <windows.h>
#include <iostream.h>
#define MAX_THREADS 3

// Prototypes are good and handy, but not necessary in this example.

//
//
//
//
//
//
//

These three functions are run by each of our three threads
Please note how the functions are declared:

In Windows, thread functions MUST be declared like this:
DWORD WINAPI <name>(LPVOID)

In short,

Return value *must* be DWORD WINAPI

And the parameter must be LPVOID

DWORD WINAPI genericThreadFuncl(LPVOID);
DWORD WINAPI printString(LPVOID);
DWORD WINAPI printNumber(LPVOID);

!

“ Example code (Continued)

COLLEGE

CRIMINAI.
JUSTICE

// We need an array of Handles to threads
HANDLE hThreads[MAX_THREADS];

// ...an array of thread id's
DWORD 1d[MAX_THREADS];

// And a waiter (which I'll explain later)
DWORD waiter;

10

11

“ Example code (Continued)

COLLEGE
OF
CRIMINAL
JUSTICE

!

DWORD WINAPI genericThreadFuncl(LPVOID n)
{

// Here are the three functions that are defined.
// They do trivial things and should be mostly self explanatory.

n

cout << "Thread started (genericThreadFuncl)..." << endl;

for(int 1 = 0; 1 < 100; i++) {
cout << "threadFuncl says:

<< 1 << endl;

}

cout << "...(genericThreadFuncl) Thread terminating.'
return (DWORD)n;

n 1

<< endl;

“ Example code (Continued)

COLLEGE
OF
CRIMINAL
JUSTICE

!

DWORD WINAPI printString(LPVOID n)
{

cout << "Thread started (printString)..." << endl;
// NOTE: In the next 1line, we make a pointer and cast what was passed 1in.
// This 1s how you use the LPVOID parameters passed into the
// CreateThread call (below).
char* str = (char*)n;
for(int 1 = 0; 1 < 50; 1++) {
cout << "printString says:

n

<< str << endl;

}

cout << "...(printString) Thread terminating." << endl;
return (DWORD)n;

12

13

“ Example code (Continued)

COLLEGE
OF
CRIMINAL
JUSTICE

DWORD WINAPI printNumber(LPVOID n)
{

cout << "Thread started (printNumber)...
int num = (int)n;
for (int 1 = num; 1 < (hum + 100); i++) {

cout << "printNumber says: " << 1 << endl;
by

cout << "...(printHello) Thread terminating.'
return (DWORD)n;

<< endl;

<< endl;

14

“ Example code (Continued)

COLLEGE

CRIMINAI.
JUSTICE

i

// Get ready, because here's where all the *REAL* magic happens
int main(int argc, char* argv[])
{
1nt CONSTANT = 2000;
char myString[20];
strcpy(myString, "Threads are Easy!");

// Here 1s where we call the CreateThread Windows API Function that actually
// creates and begins execution of a thread.

// Please read your help files for what each parameter does on

// your Operating system.

COLLEGE

CRIMINAL
JUSTICE

!

Example code (Continued)

// Here's some basics:

// Parameter
// Parameter
// Parameter
// Parameter
// Parameter
// Parameter

hThreads[@] =
hThreads[1] =
hThreads[2] =

: Lookup

: Stack size (0 is default which means 1MB)

: The function to run with this thread

: Any parameter that you want to pass to the thread function

: Lookup

: Once thread is created, an id is put in this variable passed 1in

uT A W N EFEOS

CreateThread(NULL,Q,genericThreadFuncl, (LPVOID)@,NULL,&1d[@]);
CreateThread(NULL,Q,printString, (LPVOID)myString,NULL,&1d[1]);
CreateThread(NULL,@,printNumber, (LPVOID)CONSTANT,NULL,&1d[2]);

15

i

//
//
//

//

//
//

//
//

“ Example code (Continued)

COLLEGE
OF

CRIMINAL
JUSTICE

Now that all three threads are created and running, we need to stop
the primary thread (which is this program itself - Remember that once
"main" returns, our program exits)

so that our threads have time to finish. To do this, we do what 1is
called "Blocking".

We're going to make main just stop and wait until all three threads
are done.

This 1s done easily with the next 1ine of code. Please read the help
file about the specific API call "WaitForMultipleObjects".

waiter = WaitForMultipleObjects(MAX_THREADS, hThreads, TRUE, INFINITE);

16

i

“ Example code (Continued)

COLLEGE
OF

CRIMINAL
JUSTICE

// After all three threads have finished their task, "main" resumes and

// we're now ready to close the handles of the threads. This is just a
// bit of clean up work.

// Use the (CloseHandle (API) function to do this. (Look it up in the
// help files as well)

for(int 1 = @0; 1 < MAX_THREADS; 1i++) {
CloseHandle(ChThreads[1i]);
}

return 0;

17

“ Example code using Windows API in the Textbook

COLLEGE
OF

CRIMINAL
JUSTICE

!

// First, always include <windows.h> for all the Windows specific thread
// information

#include <windows.h>

#include <stdio.h>

DWORD Sum; /* data 1is shared by the thread(s) */
/* the thread runs in this separate function */

DWORD WINAPI Summation(LPVOID Param)

{
DWORD Upper = *(DWORD*)Param;

for (DWORD 1=0; i <= Upper; i++)
Sum += 1;
return 0;

18

!

Example code using Windows API in the Textbook v

(Continued)

COLLEGE
OF

CRIMINAL
JUSTICE

int main(int argc, char* argv[])
{
DWORD Threadld;
HANDLE ThreadHandle;
int Param;
/* perform some basic error checking */
1f (argc != 2) {
fprintf(stderr, “An integer parameter 1s required\n”);
return -1;

}

Param = atoi(Cargv[1l]);

1f (Param < 0) {
fprintf(stderr, “An integer >= @ 1is required\n”);
return -1;

Example code using Windows API in the Textbook
(Continued)

COLLEGE
OF

CRIMINAL
JUSTICE

/* create the thread */
ThreadHandle = CreateThread(
NULL, // default security attributes
@, // default stack size
Summation, // thread function
&Param, // parameter to thread function
@, // default creation flags
&Threadld); // returns the thread identifier

1f (ThreadHandle !'= NULL) {
// now wait for the thread to finish
WaitForSingleObject(ThreadHandle, INFINITE);
// close the thread handle
CloseHandle(ThreadHandle);
printf(“sum = %d\n”, Sum);

20

