

1

Programming Languages:

Lecture 12

Chapter 10: Implementing Subprograms

Jinwoo Kim
jwkim@jjay.cuny.edu

2

Chapter 10 Topics

• The General Semantics of Calls and Returns
• Implementing “Simple” Subprograms
• Implementing Subprograms with Stack-Dynamic Local

Variables
• Nested Subprograms
• Blocks
• Implementing Dynamic Scoping

3

The General Semantics of Calls and Returns

• The subprogram call and return operations of a
language are together called its subprogram linkage

• A subprogram call has numerous actions
associated with it
– Implement parameter passing
– Storage arrangement for local variables
– Save execution status of calling program
– Transfer of control
– Necessary action if nested subprograms supported

4 Implementing “Simple” Subprograms:
Call Semantics

• Basic assumption of “Simple” subprogram
– No nested subprograms
– All local variables are static

• Save the execution status of the caller

• Carry out the parameter-passing process

• Pass the return address to the callee

• Transfer control to the callee

5 Implementing “Simple” Subprograms:
Return Semantics

• If pass-by-value-result parameters are used, move the
current values of those parameters to their
corresponding actual parameters

• If it is a function, move the functional value to a place
the caller can get it

• Restore the execution status of the caller

• Transfer control back to the caller

6 Implementing “Simple” Subprograms:
Storage required for Call & Return

• Status information about the caller

• Parameters

• Return address

• Return value for functions

7

Implementing “Simple” Subprograms: Parts

• Two separate parts of the simple subprogram
– Actual code part

– Constant

– Noncode part
– local variables and data that can change

– They are fixed in size

• The format, or layout, of the noncode part of an executing

subprogram is called an activation record
– The data it describes are relevant only during activation

• An activation record instance is a concrete example of an
activation record
– The collection of data for a particular subprogram activation

8

An Activation Record for “Simple” Subprograms

Since simple subprograms do not supports recursion, there can be only
one active version of a given subprogram at a time

Single instance of activation record for a subprogram exists

9 Code and Activation Records of a
Program with “Simple”

Subprograms

10 Implementing Subprograms with
Stack-Dynamic Local Variables

• More complex activation record
– The compiler must generate code to cause implicit allocation

and de-allocation of local variables
– Recursion must be supported (adds the possibility of multiple

simultaneous activations of a subprogram)

11 Typical Activation Record for a Language
with Stack-Dynamic Local Variables

12 Implementing Subprograms with Stack-
Dynamic Local Variables: Activation Record

• The activation record format is static, but its size may
be dynamic

• The dynamic link points to the top of an instance of the
activation record of the caller

• An activation record instance is dynamically created
when a subprogram is called

• Run-time stack

13

An Example: C Function

void sub(float total, int part)

{

 int list[4];

 float sum;

 …

}

[4]

[3]

[2]

[1]

[0]

14

An Example Without Recursion

void A(int x) {
 int y;
 ...
 C(y);
 ...
}
void B(float r) {
 int s, t;
 ...
 A(s);
 ...
}
void C(int q) {
 ...
}
void main() {
 float p;
 ...
 B(p);
 ...
}

main calls B
B calls A
A calls C

15

An Example Without Recursion

16

Dynamic Chain and Local Offset

• The collection of dynamic links in the stack at a given
time is called the dynamic chain, or call chain

• Local variables can be accessed by their offset from the
beginning of the activation record
– This offset is called the local_offset

• The local_offset of a local variable can be determined

by the compiler at compile time

17

An Example With Recursion

• The activation record used in the previous example
supports recursion, e.g.

 int factorial (int n) {
 <-----------------------------1
 if (n <= 1) return 1;
 else return (n * factorial(n - 1));
 <-----------------------------2
 }

 void main() {
 int value;
 value = factorial(3);
 <-----------------------------3
 }

18
Activation Record for factorial

19

Nested Subprograms

• Some non-C-based static-scoped languages (e.g.,
Fortran 95, Ada, JavaScript) use stack-dynamic local
variables and allow subprograms to be nested

• All variables that can be non-locally accessed reside in
some activation record instance in the stack

• The process of locating a non-local reference:
1. Find the correct activation record instance
2. Determine the correct offset within that activation record

instance

20

Locating a Non-local Reference

• Finding the offset is easy

• Finding the correct activation record instance
– Static semantic rules guarantee that all non-local

variables that can be referenced have been allocated in
some activation record instance that is on the stack when
the reference is made

21

Static Scoping

• A static chain is a chain of static links that connects
certain activation record instances

• The static link in an activation record instance for
subprogram A points to one of the activation record
instances of A's static parent

• The static chain from an activation record instance
connects it to all of its static ancestors

22

Example Pascal Program

program MAIN_2;
 var X : integer;
 procedure BIGSUB;
 var A, B, C : integer;
 procedure SUB1;
 var A, D : integer;
 begin { SUB1 }
 A := B + C; <-----------------------1
 end; { SUB1 }
 procedure SUB2(X : integer);
 var B, E : integer;
 procedure SUB3;
 var C, E : integer;
 begin { SUB3 }
 SUB1;
 E := B + A: <--------------------2
 end; { SUB3 }
 begin { SUB2 }
 SUB3;
 A := D + E; <-----------------------3
 end; { SUB2 }
 begin { BIGSUB }
 SUB2(7);
 end; { BIGSUB }
 begin
 BIGSUB;
 end; { MAIN_2 }

23

Example Pascal Program (continued)

• Call sequence for MAIN_2

 MAIN_2 calls BIGSUB
 BIGSUB calls SUB2
 SUB2 calls SUB3
 SUB3 calls SUB1

24

Stack Contents at Position 1

program MAIN_2;
 var X : integer;
 procedure BIGSUB;
 var A, B, C : integer;
 procedure SUB1;
 var A, D : integer;
 begin { SUB1 }
 A := B + C; <-----------------------1
 end; { SUB1 }
 procedure SUB2(X : integer);
 var B, E : integer;
 procedure SUB3;
 var C, E : integer;
 begin { SUB3 }
 SUB1;
 E := B + A: <--------------------2
 end; { SUB3 }
 begin { SUB2 }
 SUB3;
 A := D + E; <-----------------------3
 end; { SUB2 }
 begin { BIGSUB }
 SUB2(7);
 end; { BIGSUB }
 begin
 BIGSUB;
 end; { MAIN_2 }

25

Displays

• An alternative to static chains

• Static links are stored in a single array called a
display

• The contents of the display at any given time is a
list of addresses of the accessible activation record
instances

26

Blocks

• Blocks are user-specified local scopes for variables

• An example in C
 {int temp;
 temp = list [upper];
 list [upper] = list [lower];
 list [lower] = temp
 }

• The lifetime of temp in the above example begins when
control enters the block

• An advantage of using a local variable like temp is that it
cannot interfere with any other variable with the same name

27

Implementing Blocks

• Two Methods:
1. Treat blocks as parameter-less subprograms that are

always called from the same location
– Every block has an activation record; an instance is created

every time the block is executed

2. Since the maximum storage required for a block can be
statically determined, this amount of space can be
allocated after the local variables in the activation record

28

Implementing Dynamic Scoping

• Deep Access: non-local references are found by
searching the activation record instances on the
dynamic chain

• Shallow Access: put locals in a central place
– One stack for each variable name
– Central table with an entry for each variable name

29 Using Shallow Access to Implement
Dynamic Scoping

30

Summary

• Subprogram linkage semantics requires many action by
the implementation

• Simple subprograms have relatively basic actions

• Stack-dynamic languages are more complex

• Subprograms with stack-dynamic local variables and
nested subprograms have two components
– actual code
– activation record

31

Summary (continued)

• Activation record instances contain formal
parameters and local variables among other things

• Static chains are the primary method of
implementing accesses to non-local variables in
static-scoped languages with nested subprograms

• Access to non-local variables in dynamic-scoped
languages can be implemented by use of the
dynamic chain or thru some central variable table
method

32

Homework #7

• Problem Solving (P. 477 of class textbook)
– 1, 3, 7, 8, 9

• Due date: One week from assigned date
– Please hand in printed (typed) form

– I do not accept any handwritten assignment
– Exception: pictures

	Programming Languages: ��Lecture 12��Chapter 10: Implementing Subprograms
	Chapter 10 Topics
	The General Semantics of Calls and Returns
	Implementing “Simple” Subprograms: Call Semantics
	Implementing “Simple” Subprograms: Return Semantics
	Implementing “Simple” Subprograms: Storage required for Call & Return
	Implementing “Simple” Subprograms: Parts
	An Activation Record for “Simple” Subprograms
	Code and Activation Records of a Program with “Simple” Subprograms
	Implementing Subprograms with �Stack-Dynamic Local Variables
	Typical Activation Record for a Language with Stack-Dynamic Local Variables
	Implementing Subprograms with Stack-Dynamic Local Variables: Activation Record
	An Example: C Function
	An Example Without Recursion
	An Example Without Recursion
	Dynamic Chain and Local Offset
	An Example With Recursion
	Activation Record for factorial
	Nested Subprograms
	Locating a Non-local Reference
	Static Scoping
	Example Pascal Program
	Example Pascal Program (continued)
	Stack Contents at Position 1
	Displays
	Blocks
	Implementing Blocks
	Implementing Dynamic Scoping
	Using Shallow Access to Implement Dynamic Scoping
	Summary
	Summary (continued)
	Homework #7

