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Chapter 15 Topics

• Introduction

• Mathematical Functions

• Fundamentals of Functional Programming Languages 

• The First Functional Programming Language: LISP

• Introduction to Scheme

• COMMON LISP

• ML

• Haskell

• Applications of Functional Languages

• Comparison of Functional and Imperative Languages
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Introduction

• The design of the imperative languages is based directly on 

the von Neumann architecture

– Efficiency is the primary concern, rather than the suitability of the 

language for software development

• The design of the functional languages is based on 

mathematical functions

– A solid theoretical basis that is also closer to the user, but 

relatively unconcerned with the architecture of the machines on 

which programs will run
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Mathematical Functions

• A mathematical function is a mapping of members of one set, 

called the domain set, to another set, called the range set

• A lambda calculus (-calculus)

– Introduced in 1930’s by Church and Kleene as part of investigation 

into the foundations of mathematics

– Emerged as a useful tool in the investigation of problems in 

computability and recursion theory

– Forms the basis of a paradigm of “Functional Programming”

– Primary features of Functional Programs

– Stateless

– Deals exclusively with functions which accepts and return data (including 

other functions)

– Produce no side effects in “state” and do not alter “incomiing data”

– Most modern functional languages built on -calculus

– Lisp, Scheme, ML and Haskell
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Lambda Expressions

• Every expression is a “unary function” 

– it accepts a single input (“argument”) and returns a single value 

(“result”)

– Since every expression is a “unary function”, every argument and 

result are functions too

– This makes -calculus quite interesting and unique within both 

computation and mathematics

• Example
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Lambda Expressions (Continued)

• A function is anonymously defined in Lambda expressions

– Nameless functions

– Example:

• Lambda expressions are applied to parameter(s) by placing 

the parameter(s) after the expression

e.g.,   ((x) x * x * x)(2)

which evaluates to 8
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Functional Forms

• A higher-order function, or functional form, is one that either 

takes functions as parameters or yields a function as its result, 

or both

– Composition

– Apply-to-all

• Higher-order functions are closely related to first-class 

functions

– mathematical concept of functions that operate on other 

functions, while "first-class" is a computer science term that 

describes programming language entities that have no restriction 

on their use

– first-class functions can appear anywhere in the program that 

other first-class entities like numbers can, including as arguments 

to other functions and as their return values
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Function Composition

• A functional form that takes two functions as parameters and 

yields a function whose value is the first actual parameter 

function applied to the application of the second

Form: h  f ° g

which means  h(x)  f ( g ( x))

For  f(x)  x + 2 and   g(x)  3 * x,

h  f ° g yields (3 * x)+ 2
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Apply-to-all

• A functional form that takes a single function as a parameter and 

yields a list of values obtained by applying the given function to 

each element of a list of parameters

Form: 

For  h(x)  x * x

(h, (2, 3, 4)) yields  (4, 9, 16)
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Fundamentals: Functional Programming Languages

• The objective of the design of a FPL is to mimic mathematical 

functions to the greatest extent possible

• The basic process of computation is fundamentally different in a 

FPL than in an imperative language

– In an imperative language, operations are done and the results are 

stored in variables for later use

– Management of variables is a constant concern and source of 

complexity for imperative programming

• In an FPL, variables are not necessary, as is the case in 

mathematics
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Referential Transparency

• An expression is said to be referentially transparent if it can be 

replaced with its value without changing the program 

– in other words, yielding a program that has the same effects and 

output on the same input (no side effect)

– E.g., compare ++x and int plusone(int x) { return x+1;}

• In an FPL, the evaluation of a function always produces the same 

result given the same parameters
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Referential Transparency

• The chief advantage of writing a code in a referentially 

transparent style

– Better static code analysis and code-improving transformations

– E.g., expensive function call inside a loop

• Primary disadvantage from enforcing referential transparency

– it makes the expression of operations that naturally fit a sequence-

of-steps imperative programming style more awkward and less 

concise
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Coding Styles Comparison

• Imperative programs tend to emphasize the series of steps taken 

by a program in carrying out an action
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Coding Styles Comparison (Continued)

• Functional programs tend to emphasize the composition and 

arrangement of functions, often without specifying explicit steps

unsigned int recFib (unsigned int n) {

if (n < 2)

return n; 

else

return recFib(n-1) + recFib(n-2);
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Coding Styles Comparison (Continued)

• Functional programs tend to emphasize the composition and 

arrangement of functions, often without specifying explicit steps
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Applications of Functional Languages

• APL is used for throw-away programs

– APL has long had a small and fervent user base 

– It was and still is popular in financial and insurance applications, 

in simulations, and in mathematical applications 

– often where a solution changes frequently or where in a 

standard language yields excessive complexity 

– E.g. 
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APL Example

• Fast Fourier Transformation (FFT)

– “Programming in APL” by Wolfang K. Giloi, 1977, p.212

– People thinking of Perl as an unreadable language have obviously never 

seen any APL code yet
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Applications of Functional Languages (Continued)

• LISP is used for artificial intelligence

– Knowledge representation

– Machine learning

– Natural language processing

– Modeling of speech and vision

• Scheme is used to teach introductory programming at a 

significant number of universities
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ML

• A static-scoped functional language

• Uses type declarations, but also does type inferencing to determine 

the types of undeclared variables

• It is strongly typed (whereas Scheme is essentially typeless) and 

has no type coercions

• Includes exception handling and a module facility for implementing 

abstract data types

• Includes lists and list operations
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ML Specifics

• The val statement binds a name to a value (similar to 

DEFINE in Scheme)

• Function declaration form:

fun name (parameters) = body;

e.g., fun cube (x : int) = x * x * x;
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Comparing Functional and Imperative Languages

• Imperative Languages:

– Efficient execution

– Complex semantics

– Complex syntax

– Concurrency is programmer designed

• Functional Languages:

– Simple semantics

– Simple syntax

– Inefficient execution

– Programs can automatically be made concurrent 
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Features of ML

• A pure functional language

– serious programs can be written without using variables

• Widely accepted

– reasonable performance (claimed)

– syntax not as arcane as LISP
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On this Course,

• We use Standard ML of New Jersey

– http://www.smlnj.org/

• Runs on PCs, and lots of other platforms

• See various ML documentation at

– http://www.standardml.org/

http://www.smlnj.org/
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Running SML on Windows

• On Windows, it’s invoked from the Programs menu 

under the Start button

• Also possible to run from MS-DOS prompt, 

– e.g. C: sml\bin\sml-cm <foo.sml

– note that a set of function definitions can be read in this 

way automatically

• Use control z to exit interpreter
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Hello, world in SML

Standard ML of New Jersey,

- print("Hello world\n");

Hello world

val it = () : unit

-
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Arithmetic in ML

• Copy and paste the following text into a Standard 

ML window

2+2;         (* note semicolon at end*)

3*4;

4/3;         (* an error! *)

6 div 2;     (* integer division *)

7 div 3;
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It should look like this
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Declaring Constants

• Constants are not exactly the same as variables

– once set, they can’t be modified

– they can be redefined, but existings uses of that constant 

(e.g. in functions) aren’t affected by such redefinition

val freezingFahr = 32;
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Declaring Functions

• A function takes an input value and returns an 

output value

• ML will figure out the types

fun fahrToCelsius f = (f -freezingFahr) * 5 div 9;

fun celsiusToFahr c = c * 9 div 5 + freezingFahr;
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Notes 

• ML is picky about not mixing types, such as int and 

real, in expressions

– Basic types of ML: integer, real, string, char, boolean

– From basic types, we can construct objects using tuples, 

lists, functions and records

• The value of “it” is always the last value computed

• Function arguments don’t always need 

parentheses, but it doesn’t hurt to use them
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Types of arguments and results

• ML figures out the input and/or output types for 

simple expressions, constant declarations, and 

function declarations

• If the default isn’t what you want, you can specify 

the input and output types, e.g.

fun divBy2 x:int = x div 2 : int;

fun divideBy2 (y : real) = y / 2.0;

divBy2 (5);

divideBy2 (5.0);
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Two similar divide functions

- fun divBy2 x:int = x div 2 : int;

val divBy2 = fn : int -> int

- fun divideBy2 (y : real) = y / 2.0;

val divideBy2 = fn : real -> real

- divBy2 (5);

val it = 2 : int

- divideBy2 (5.0);

val it = 2.5 : real

-



34

Ints and Reals

Int.abs ~3;

Int.sign ~3;

Int.max (4, 7);

Int.min (~2, 2);

Real(freezingFahr); 

Math.sqrt real(2);

Math.sqrt(real(2));

Math.sqrt(real 3);

• Note ~ is unary minus

• min and max take just two 

input arguments, but that 

can be fixed!

• Real converts ints to real

• Parens can sometimes be 

omitted



35

- Int.abs ~3;

val it = 3 : int

- Int.sign ~3;

val it = ~1 : int

- Int.max (4, 7);

val it = 7 : int

- Int.min (~2, 2);

val it = ~2 : int

- real(freezingFahr); 

val it = 32.0 : real

- Math.sqrt real(2);

stdIn:57.1-57.18 Error: operator and operand don't agree [tycon mismatch]

operator domain: real

operand:         int -> real

in expression:

Math.sqrt real

- Math.sqrt(real(2));

val it = 1.41421356237 : real

- Math.sqrt(real 3);

val it = 1.73205080757 : real

-
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Strings

• Delimited by double quotes

• the caret mark ^ is used for string concatenation, 

e.g. “house”^”cat”

• \n is used for newline, as in C and C++
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Lists in ML

• Objects in a list must be of the same type

– [1,2,3];

– [“dog”, “cat”, “moose”];

• The empty list is written [] or nil



38

Making Lists

• The @ operator is used to concatenate two lists of 

the same type

• The functions hd and tl give the first element of the 

list, and the rest of the list, respectively
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List Operations

- val list1 = [1,2,3];

val list1 = [1,2,3] : int list

- val list2 = [3,4,5];

val list2 = [3,4,5] : int list

- list1@list2;

val it = [1,2,3,3,4,5] : int list

- hd list1;

val it = 1 : int

- tl list2;

val it = [4,5] : int list
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Strings and Lists

• The explode function converts a string into a list of 

characters

• The implode function converts a list of characters 

into a string

• Examples:

- explode("foo");

val it = [#"f",#"o",#"o"] : char list

- implode [#"c",#"a",#"t"];

val it = "cat" : string

-
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Heads and Tails

• The cons operator :: takes an element and 

prepends it to a list of that same type

• For example, the expression 1::[2,3] results in the 

list [1,2,3] 

• What’s the value of [1,2]::[ [3,4], [5,6]] ?
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Functions and Patterns

• Recall that min and max take just two arguments

• However, using the fact that, for example,

– min(a, b, c) = min(a, min(b, c))
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Generalizing Min

• An example of ML pattern matching

– the cons notation x::xs is both a binary constructor and a 

pattern

– cases aren’t supposed to overlap

fun multiMin (x: int) = x |

multiMin (x:int, y:int) = Int.min(x, y) | 

multiMin (x::xs) = Int.min(x, multiMin(xs));

(* What’s wrong with above first attempt??? *)
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Example

fun fact(n : int): int = if n = 0 then 1

else n * fact(n-1);

fun fact(0) = 1

|   fact(n: int): int = n * fact(n-1);
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List operations in ML (revisit)

• Lists are represented in square bracket with 

elements separated by commas 

– [1, 2, 3, 4]

• Empty list is specified by [ ] or nil 

– [1, 2, 3, 4]

• You can construct a list using :: operator

– 1 :: [2, 3, 4]

• hd takes out head element from list and tl returns 

remaining list without head element

– hd  [1 , 2,  3]

– tl  [1 , 2,  3]
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List operations in ML

fun length([]) = 0 

|   length(h::t) = 1 + length(t);

fun append([], list2) = list2

|   append(h::t, list2) = h :: append(t,list2);
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Chapter Summary

• Functional programming languages use function application, conditional 

expressions, recursion, and functional forms to control program execution 

instead of imperative features such as variables and assignments

• LISP began as a purely functional language and later included imperative 

features

• Scheme is a relatively simple dialect of LISP that uses static scoping 

exclusively

• COMMON LISP is a large LISP-based language

• ML is a static-scoped and strongly typed functional language which 

includes type inference, exception handling, and a variety of data 

structures and abstract data types

• Haskell is a lazy functional language supporting infinite lists and set 

comprehension.

• Purely functional languages have advantages over imperative alternatives, 

but their lower efficiency on existing machine architectures has prevented 

them from enjoying widespread use 


