COLLEGE

CRIMINAL
JUSTICE

Programming Languages:
Lecture 9

Chapter 15: Functional Programming
Languages

Jinwoo Kim
jwkim@jjay.cuny.edu



i

Chapter 15 Topics

CDLLEGE

CRIMINAL
JUSTICE

Introduction
Mathematical Functions
Fundamentals of Functional Programming Languages

ML

Applications of Functional Languages
Comparison of Functional and Imperative Languages




Introduction

CDLLEGE

CRIMINAL
JUSTICE

i

e The design of the imperative languages is based directly on
the von Neumann architecture

— Efficiency is the primary concern, rather than the suitability of the
language for software development

e The design of the functional languages is based on
mathematical functions
— A solid theoretical basis that is also closer to the user, but

relatively unconcerned with the architecture of the machines on
which programs will run



i

CDLLEGE

CRIMINAL
JUSTICE

Mathematical Functions

A mathematical function is a mapping of members of one set,
called the domain set, to another set, called the range set

A lambda calculus (A-calculus)

Introduced in 1930’s by Church and Kleene as part of investigation
into the foundations of mathematics

Emerged as a useful tool in the investigation of problems in
computability and recursion theory

Forms the basis of a paradigm of “Functional Programming”

— Primary features of Functional Programs
— Stateless

— Deals exclusively with functions which accepts and return data (including
other functions)

— Produce no side effects in “state” and do not alter “incomiing data”
Most modern functional languages built on A-calculus
— Lisp, Scheme, ML and Haskell



Lambda Expressions

CﬂLLEGE

CRIMINAL
JUSTICE

i

e Every expression is a “unary function”

— it accepts a single input (“argument”) and returns a single value
(“result”)

— Since every expression is a “unary function”, every argument and
result are functions too

— This makes A-calculus quite interesting and unique within both
computation and mathematics

e Example
(z,y) m T XT+YyYXy

((z,y) »x xx+yxy)5,2)
=5X5+2x2=29

r— (y— X+ Yy XY)

(= (y—=xxx+y xy))(5))(2)
=y 5x5+yxy)(2)
=5x5+2x2=29



i

CULLEGE

CRIMINAL
JUSTICE

Lambda Expressions (Continued)

A function is anonymously defined in Lambda expressions

— Nameless functions

— Example:
sgsum(z,y) =X T +Yy Xy
(z,y) maxXT+YyXy

Lambda expressions are applied to parameter(s) by placing
the parameter(s) after the expression

e.d., (A(x) x * x * x)(2)
which evaluates to 8



i

CULLEGE

CRIM!NAL
JUSTICE

Functional Forms

A higher-order function, or functional form, is one that either
takes functions as parameters or yields a function as its result,
or both

— Composition
— Apply-to-all

Higher-order functions are closely related to first-class
functions

— mathematical concept of functions that operate on other
functions, while "first-class" is a computer science term that
describes programming language entities that have no restriction
on their use

— first-class functions can appear anywhere in the program that
other first-class entities like numbers can, including as arguments
to other functions and as their return values



i

CDLLEGE

CRIMINAL
JUSTICE

Function Composition

A functional form that takes two functions as parameters and
yields a function whose value is the first actual parameter
function applied to the application of the second

Form:h = £ ° g
whichmeans h(x) = £ ( g ( x))

For f(x) = x + 2 and g(x) = 3 * x,
h=f°g Vyelds (3 » x)+ 2



Apply-to-all

CDLLEGE

CRIMINAL
JUSTICE

i

e A functional form that takes a single function as a parameter and

yields a list of values obtained by applying the given function to
each element of a list of parameters

Form: o
For h(x) = x * x
o(h, (2, 3, 4)) vyelds (4, 9, 16)



10
“Fundamentals: Functional Programming Languages

COLLEGE
OF
CRIMINAL
JUSTICE

i

e The objective of the design of a FPL is to mimic mathematical
functions to the greatest extent possible

e The basic process of computation is fundamentally different in a
FPL than in an imperative language

— In an imperative language, operations are done and the results are
stored in variables for later use

— Management of variables is a constant concern and source of
complexity for imperative programming

e Inan FPL, variables are not necessary, as is the case in
mathematics



i

Referential Transparency

CULLEGE

CRIMINAL
JUSTICE

An expression is said to be referentially transparent if it can be
replaced with its value without changing the program

— in other words, yielding a program that has the same effects and
output on the same input (no side effect)

— E.g., compare ++x and int plusone(int x) { return x+1;}

In an FPL, the evaluation of a function always produces the same
result given the same parameters

11



i

Referential Transparency

CULLEGE

CRIM!NAL
JUSTICE

The chief advantage of writing a code in a referentially
transparent style

— Better static code analysis and code-improving transformations
— E.g., expensive function call inside a loop

Primary disadvantage from enforcing referential transparency

— It makes the expression of operations that naturally fit a sequence-
of-steps imperative programming style more awkward and less
concise

12



Coding Styles Comparison

COLLEGE
OF
CRIMINAL
JUSTICE

i

e Imperative programs tend to emphasize the series of steps taken
by a program in carrying out an action

#include <iostreams

// Fibonaccl numbers, lmperative style
int fibonaccii{int iterations!

{
int first = 0, second = 1; // =seed wvalues
for {(int i = 0; 1 < iterations:; ++1i) {
int sum = first + second:
first = sgecond:
second = sum;
¥
return first:
}
int maini()
1

std::cout << fibonacci(l0i << "\n":;
return 0;



i

Coding Styles Comparison (Continued)

CDLLEGE

CRIMINAL
JUSTICE

Functional programs tend to emphasize the composition and
arrangement of functions, often without specifying explicit steps

unsigned int recFib (unsigned int n) {
if (n<2)
return n;
else
return recFib(n-1) + recFib(n-2);

14



i

CULLEGE

CRIMINAL
JUSTICE

15

Coding Styles Comparison (Continued)

Functional programs tend to emphasize the composition and
arrangement of functions, often without specifying explicit steps

defun fact (x

fact 10

if ¥ 1 1 (* x (fact (- x 1

unsigned int factorial(unsigned int N) {
int fact = 1, 1i;

// Loop from 1 to N to get the factorial
for (i = 1; i <= N; i++) {
fact *= 1i;

}

return fact;



i

CDLLEGE

CRIMINAL
JUSTICE

Applications of Functional Languages

APL is used for throw-away programs
— APL has long had a small and fervent user base

— It was and still is popular in financial and insurance applications,

in simulations, and in mathematical applications

— often where a solution changes frequently or where in a
standard language yields excessive complexity

- E.Q.

100

D
=1

(~RE€Ro.xR)/R+— 1| R

+/¢100

16



i

CDLLEGE

CRIMINAL
JUSTICE

APL Example

Fast Fourier Transformation (FFT)
— “Programming in APL” by Wolfang K. Giloi, 1977, p.212

— People thinking of Perl as an unreadable language have obviously never
seen any APL code yet

[1]
[2]
[3]

[4]
[5]

L6]

V Z<FFT X;C;:D;E;J;K;LL;M;N;O
LL<| 2%-0-1M<« | 28 N,0pE« 1-2x~0+«11.J«1L
«0,0p0K<« 1N« 14pX
HM>L<L+1)/1+ppJ«I,Np 0 1 o.=(
2xL)p1
Ze X[5(L<0)HSLLY+. xJ«(M,N)o J]
X< 2 1 0.00(-0-K): 14LL
Z<Z[;K-,LL[L] xJ[L;]11+(p Z) p(-+X[;D] x
Z[;C]),++X[;D<«O+Np LL[E+M-L]x-0-1
2xLL[L] ]xeZ[;C<«K+,LL[L] x0=J[L;] ]
+((M+0O)>L<L+1)/5

17



wee APpPlications of Functional Languages (Continued)

CRIMINAL
JUSTICE

i

e LISP is used for artificial intelligence
— Knowledge representation
— Machine learning
— Natural language processing
— Modeling of speech and vision

e Scheme is used to teach introductory programming at a
significant number of universities



19

ML

CDLLEGE

CRIMINAL
JUSTICE

i

e A static-scoped functional language

e Uses type declarations, but also does type inferencing to determine
the types of undeclared variables

e Itis strongly typed (whereas Scheme is essentially typeless) and
has no type coercions

e Includes exception handling and a module facility for implementing
abstract data types

e Includes lists and list operations



i

CDLLEGE

ML Specifics

CRIMINAL

JUSTICE

The val statement binds a name to a value (similar to
DEFINE in Scheme)

Function declaration form:

fun name (parameters) = body;

e.g., fun cube (x : 1nt) = x * x * x;

20



21

“Comparing Functional and Imperative Languages

COLLEGE
OF
CRIMINAL
JUSTICE

i

e Imperative Languages:
— Efficient execution
— Complex semantics
— Complex syntax
— Concurrency is programmer designed

e Functional Languages:
— Simple semantics
— Simple syntax
— Inefficient execution
— Programs can automatically be made concurrent



i

CDLLEGE

CRIMINAL
JUSTICE

Features of ML

A pure functional language
— serious programs can be written without using variables

Widely accepted
— reasonable performance (claimed)
— syntax not as arcane as LISP

22



i

On this Course,

CULLEGE

CRIMINAL
JUSTICE

e We use Standard ML of New Jersey
— http://www.sminj.org/

e Runs on PCs, and lots of other platforms

e See various ML documentation at
— http://www.standardml.org/

23


http://www.smlnj.org/

i

Running SML on Windows

CULLEGE

CRIMINAL
JUSTICE

e On Windows, it's invoked from the Programs menu
under the Start button

e Also possible to run from MS-DOS prompt,

— €.0. C: sml\bin\sml-cm <foo.sml

— note that a set of function definitions can be read in this
way automatically

e Use control z to exit interpreter

24



i

COLLEGE

CRIMINAL
JUSTICE

Hello, world in SML

Standard ML of New Jersey,
- print ("Hello world\n");
Hello world

val 1t = () : unit

25



Arithmetic in ML

CDLLEGE

CRIMINAL
JUSTICE

i

e Copy and paste the following text into a Standard

ML window

2+2; (* note semicolon at end¥®)
3*4,;

4/3; (* an error! *)

o div 2; (* integer division ¥*)

7 div 3;

26



It should look like this

RUMX86"1

Standard ML nf New Jersey, Version 110.0.3, January 30, 1998 [CM&CME]
; (* note semicolon at end of each 7
4 : 1int

12 : 1int

(* an error! *) _
Error: overloaded variable not defined at type

(* integer division *)




i

CDLLEGE

CRIMINAL
JUSTICE

Declaring Constants

Constants are not exactly the same as variables
— once set, they can’t be modified

— they can be redefined, but existings uses of that constant
(e.g. in functions) aren’t affected by such redefinition

val freezingFahr = 32;

28



i

CDLLEGE

CRIMINAL
JUSTICE

Declaring Functions

e A function takes an input value and returns an

output value

e ML will figure out the types

fun fahrToCelsius f =

fun celsiusToFahr c

(f -freezingFahr) * 5 div 9;

c * 9 div 5 + freezingFahr;

29



type: 1nt . N
- 6 div 2; * integer division *)
= : 1int

int
- val freezingFahr = 32;
val freezingFahr = 32 : int
- fun fahrToCelsius ¥ = (f -freezingFahr) * 5 div 9;
val fahrToCelsius = fn : int -»> int
- fun celsiusToFahr ¢ = ¢ * 9 div 5 + freezingFahr;
val celsiusToFahr = fn : int -»> int
- fahrToCelsius 0;
val 1t = ~18 : 1int
- fahrToCelsius 32;
val 1t = 0 : 1int
- GC #0.0.0.0.1.5: (0 ms)
fahrToCelsius 212;
val it = 100 : 1int
- celsiusToFahr 0;
val 1t = 32 : 1int
- celsiusToFahr 100;
val it = 212 : 1int
- celsiusToFahr 30;
val 1t = 86 : 1int




Notes

ML is picky about not mixing types, such as int and
real, in expressions

— Basic types of ML: integer, real, string, char, boolean

— From basic types, we can construct objects using tuples,
lists, functions and records

The value of “it” is always the last value computed

Function arguments don't always need
parentheses, but it doesn’t hurt to use them



i

CDLLEGE

CRIMINAL
JUSTICE

Types of arguments and results

ML figures out the input and/or output types for
simple expressions, constant declarations, and

function declarations

If the default isn't what you want, you can specify
the input and output types, e.g.

fun divByZ2 x:int = x div 2 : int;
fun divideBy2 (y : real) =vy / 2.0;
divBy2 (5);

divideBy2 (5.0);

32



COLLEGE

CRIMINAL
JUSTICE

Two similar divide functions

- fun divByZ2 x:int

= x div 2

val divBy2 = fn int -> int
- fun divideBy2 (y real) =
val divideBy2 = fn real —->
- divBy2 (5);

val 1t = 2 : 1nt

- divideBy2 (5.0);

val 1t = 2.5 real

int;

y / 2.0;

real

33



Ints and Reals

Note ~ is unary minus

min and max take just two
iInput arguments, but that
can be fixed!

Real converts ints to real

Parens can sometimes be
omitted

.abs ~3;
.sign ~3;

Real(freezingFahr);
Math.sgrt real (2
Math.sqgrt (real (2
Math.sqgrt (real 3



COLLEGE
OF
CRIMINAL

- Int.abs ~3;

val 1t = 3 : int

- Int.sign ~3;

val it = ~1 : int

- Int.max (4, 7);

val it = 7 : int

- Int.min (~2, 2);

val it = ~2 : int

- real (freezingFahr);

val it = 32.0 : real

- Math.sqgrt real (2);

stdIn:57.1-57.18 Error:
operator domain: real
operand: int
in expression:

Math.sgrt real

- Math.sqgrt(real (2));

val it = 1.41421356237

- Math.sqgrt (real 3);

val it = 1.73205080757

JUSTICE [N

operator and operand don't agree

-> real

real

real

35

[tycon mismatch]



i

Strings

AL
JUSTICE

e Delimited by double guotes

e the caret mark ” is used for string concatenation,
e.g. ‘house” cat”

e \nis used for newline, as in C and C++

36



i

Lists in ML

COLLEGE
OF
C

RIMINAL
JUSTICE

e ODjects in a list must be of the same type
- [1,2,3];
— ["dog”, “cat”, “moose’];

e The empty listis written [] ornil

37



i

Making Lists

AL
JUSTICE

e The @ operator is used to concatenate two lists of
the same type

e The functions hd and tl give the first element of the
list, and the rest of the list, respectively

38



39
List Operations

- val listl = [1,2,3];

val listl = [1,2,3] : int list

- val list2 = [3,4,5];

val list2 = [3,4,5] : int list

- listl@list?2;

val 1t = [1,2,3,3,4,5] : 1nt list
- hd listl;

val it = 1 : int

- tl 1list2;

val 1t = [4,5] : 1int list



Strings and Lists

The explode function converts a string into a list of
characters

The implode function converts a list of characters
Into a string

Examples:

- explode("foo™);

val it = [#"f" #"0" #"0"] : char list
- Implode [#"c" #"a" #"t"];

val It = "cat" : string

40



Heads and Tails

e The cons operator :: takes an element and
prepends it to a list of that same type

e For example, the expression 1::[2,3] results in the
list [1,2,3]

o What's the value of [1,2]:[ [3,4], [5,6]] ?

41



i

COLLEGE
OF
C

RIMINAL
JUSTICE

Functions and Patterns

Recall that min and max take just two arguments

However, using the fact that, for example,
— min(a, b, ¢c) = min(a, min(b, c))

42



Generalizing Min

COLLEGE

CRIMINAL
JUSTICE

e An example of ML pattern matching

— the cons notation x::xs is both a binary constructor and a
pattern

— cases aren’t supposed to overlap

fun multiMin (X: int) = X |
multiMin (x:int, y:int) = Int.min(x, y) |
multiMin (x::xs) = Int.min(x, multiMin(xs));

(* What’s wrong with above first attempt??? *)

43



COLLEGE

CRIMINAL
JUSTICE

fun fact (n

fun fact (0)
| fact (n

int) :

int) :

1

Example

int = 1if n = 0 then 1

else n * fact(n-1);

int = n * fact(n-1);

44



45
List operations in ML (revisit)

ix -
AL
JUSTICE

e Lists are represented in square bracket with
elements separated by commas

- [1, 2, 3, 4]

o Empty list is specified by [ ] or nil
- [1,2,3,4]

e You can construct a list using :: operator
— 112, 3, 4]

e hd takes out head element from list and tl returns
remaining list without head element

— hd [1,2, 3]
—tl [1,2, 3]



fun

fun

COLLEGE

JUSTICE

length (
length (

append (
append (

1)

[
h::

[1,
h::t

£)

1

(4

List operations in ML

0
= 1 + length(t);

1st?2) = 1list?2
list2) = h

append (t,list2);

46



CDLLEGE

47
Chapter Summary

CRIMINAL

JUSTICE

Functional programming languages use function application, conditional
expressions, recursion, and functional forms to control program execution
instead of imperative features such as variables and assignments

LISP began as a purely functional language and later included imperative
features

Scheme is a relatively simple dialect of LISP that uses static scoping
exclusively

COMMON LISP is a large LISP-based language

ML is a static-scoped and strongly typed functional language which
includes type inference, exception handling, and a variety of data
structures and abstract data types

Haskell is a lazy functional language supporting infinite lists and set
comprehension.

Purely functional languages have advantages over imperative alternatives,
but their lower efficiency on existing machine architectures has prevented
them from enjoying widespread use



