
1

Programming Languages:

Lecture 9

Chapter 15: Functional Programming

Languages

Jinwoo Kim
jwkim@jjay.cuny.edu

2

Chapter 15 Topics

• Introduction

• Mathematical Functions

• Fundamentals of Functional Programming Languages

• The First Functional Programming Language: LISP

• Introduction to Scheme

• COMMON LISP

• ML

• Haskell

• Applications of Functional Languages

• Comparison of Functional and Imperative Languages

3

Introduction

• The design of the imperative languages is based directly on

the von Neumann architecture

– Efficiency is the primary concern, rather than the suitability of the

language for software development

• The design of the functional languages is based on

mathematical functions

– A solid theoretical basis that is also closer to the user, but

relatively unconcerned with the architecture of the machines on

which programs will run

4

Mathematical Functions

• A mathematical function is a mapping of members of one set,

called the domain set, to another set, called the range set

• A lambda calculus (-calculus)

– Introduced in 1930’s by Church and Kleene as part of investigation

into the foundations of mathematics

– Emerged as a useful tool in the investigation of problems in

computability and recursion theory

– Forms the basis of a paradigm of “Functional Programming”

– Primary features of Functional Programs

– Stateless

– Deals exclusively with functions which accepts and return data (including

other functions)

– Produce no side effects in “state” and do not alter “incomiing data”

– Most modern functional languages built on -calculus

– Lisp, Scheme, ML and Haskell

5

Lambda Expressions

• Every expression is a “unary function”

– it accepts a single input (“argument”) and returns a single value

(“result”)

– Since every expression is a “unary function”, every argument and

result are functions too

– This makes -calculus quite interesting and unique within both

computation and mathematics

• Example

6

Lambda Expressions (Continued)

• A function is anonymously defined in Lambda expressions

– Nameless functions

– Example:

• Lambda expressions are applied to parameter(s) by placing

the parameter(s) after the expression

e.g., ((x) x * x * x)(2)

which evaluates to 8

7

Functional Forms

• A higher-order function, or functional form, is one that either

takes functions as parameters or yields a function as its result,

or both

– Composition

– Apply-to-all

• Higher-order functions are closely related to first-class

functions

– mathematical concept of functions that operate on other

functions, while "first-class" is a computer science term that

describes programming language entities that have no restriction

on their use

– first-class functions can appear anywhere in the program that

other first-class entities like numbers can, including as arguments

to other functions and as their return values

8

Function Composition

• A functional form that takes two functions as parameters and

yields a function whose value is the first actual parameter

function applied to the application of the second

Form: h  f ° g

which means h(x)  f (g (x))

For f(x)  x + 2 and g(x)  3 * x,

h  f ° g yields (3 * x)+ 2

9

Apply-to-all

• A functional form that takes a single function as a parameter and

yields a list of values obtained by applying the given function to

each element of a list of parameters

Form: 

For h(x)  x * x

(h, (2, 3, 4)) yields (4, 9, 16)

10

Fundamentals: Functional Programming Languages

• The objective of the design of a FPL is to mimic mathematical

functions to the greatest extent possible

• The basic process of computation is fundamentally different in a

FPL than in an imperative language

– In an imperative language, operations are done and the results are

stored in variables for later use

– Management of variables is a constant concern and source of

complexity for imperative programming

• In an FPL, variables are not necessary, as is the case in

mathematics

11

Referential Transparency

• An expression is said to be referentially transparent if it can be

replaced with its value without changing the program

– in other words, yielding a program that has the same effects and

output on the same input (no side effect)

– E.g., compare ++x and int plusone(int x) { return x+1;}

• In an FPL, the evaluation of a function always produces the same

result given the same parameters

12

Referential Transparency

• The chief advantage of writing a code in a referentially

transparent style

– Better static code analysis and code-improving transformations

– E.g., expensive function call inside a loop

• Primary disadvantage from enforcing referential transparency

– it makes the expression of operations that naturally fit a sequence-

of-steps imperative programming style more awkward and less

concise

13

Coding Styles Comparison

• Imperative programs tend to emphasize the series of steps taken

by a program in carrying out an action

14

Coding Styles Comparison (Continued)

• Functional programs tend to emphasize the composition and

arrangement of functions, often without specifying explicit steps

unsigned int recFib (unsigned int n) {

if (n < 2)

return n;

else

return recFib(n-1) + recFib(n-2);

15

Coding Styles Comparison (Continued)

• Functional programs tend to emphasize the composition and

arrangement of functions, often without specifying explicit steps

16

Applications of Functional Languages

• APL is used for throw-away programs

– APL has long had a small and fervent user base

– It was and still is popular in financial and insurance applications,

in simulations, and in mathematical applications

– often where a solution changes frequently or where in a

standard language yields excessive complexity

– E.g.

17

APL Example

• Fast Fourier Transformation (FFT)

– “Programming in APL” by Wolfang K. Giloi, 1977, p.212

– People thinking of Perl as an unreadable language have obviously never

seen any APL code yet

18

Applications of Functional Languages (Continued)

• LISP is used for artificial intelligence

– Knowledge representation

– Machine learning

– Natural language processing

– Modeling of speech and vision

• Scheme is used to teach introductory programming at a

significant number of universities

19

ML

• A static-scoped functional language

• Uses type declarations, but also does type inferencing to determine

the types of undeclared variables

• It is strongly typed (whereas Scheme is essentially typeless) and

has no type coercions

• Includes exception handling and a module facility for implementing

abstract data types

• Includes lists and list operations

20

ML Specifics

• The val statement binds a name to a value (similar to

DEFINE in Scheme)

• Function declaration form:

fun name (parameters) = body;

e.g., fun cube (x : int) = x * x * x;

21

Comparing Functional and Imperative Languages

• Imperative Languages:

– Efficient execution

– Complex semantics

– Complex syntax

– Concurrency is programmer designed

• Functional Languages:

– Simple semantics

– Simple syntax

– Inefficient execution

– Programs can automatically be made concurrent

22

Features of ML

• A pure functional language

– serious programs can be written without using variables

• Widely accepted

– reasonable performance (claimed)

– syntax not as arcane as LISP

23

On this Course,

• We use Standard ML of New Jersey

– http://www.smlnj.org/

• Runs on PCs, and lots of other platforms

• See various ML documentation at

– http://www.standardml.org/

http://www.smlnj.org/

24

Running SML on Windows

• On Windows, it’s invoked from the Programs menu

under the Start button

• Also possible to run from MS-DOS prompt,

– e.g. C: sml\bin\sml-cm <foo.sml

– note that a set of function definitions can be read in this

way automatically

• Use control z to exit interpreter

25

Hello, world in SML

Standard ML of New Jersey,

- print("Hello world\n");

Hello world

val it = () : unit

-

26

Arithmetic in ML

• Copy and paste the following text into a Standard

ML window

2+2; (* note semicolon at end*)

3*4;

4/3; (* an error! *)

6 div 2; (* integer division *)

7 div 3;

27

It should look like this

28

Declaring Constants

• Constants are not exactly the same as variables

– once set, they can’t be modified

– they can be redefined, but existings uses of that constant

(e.g. in functions) aren’t affected by such redefinition

val freezingFahr = 32;

29

Declaring Functions

• A function takes an input value and returns an

output value

• ML will figure out the types

fun fahrToCelsius f = (f -freezingFahr) * 5 div 9;

fun celsiusToFahr c = c * 9 div 5 + freezingFahr;

30

31

Notes

• ML is picky about not mixing types, such as int and

real, in expressions

– Basic types of ML: integer, real, string, char, boolean

– From basic types, we can construct objects using tuples,

lists, functions and records

• The value of “it” is always the last value computed

• Function arguments don’t always need

parentheses, but it doesn’t hurt to use them

32

Types of arguments and results

• ML figures out the input and/or output types for

simple expressions, constant declarations, and

function declarations

• If the default isn’t what you want, you can specify

the input and output types, e.g.

fun divBy2 x:int = x div 2 : int;

fun divideBy2 (y : real) = y / 2.0;

divBy2 (5);

divideBy2 (5.0);

33

Two similar divide functions

- fun divBy2 x:int = x div 2 : int;

val divBy2 = fn : int -> int

- fun divideBy2 (y : real) = y / 2.0;

val divideBy2 = fn : real -> real

- divBy2 (5);

val it = 2 : int

- divideBy2 (5.0);

val it = 2.5 : real

-

34

Ints and Reals

Int.abs ~3;

Int.sign ~3;

Int.max (4, 7);

Int.min (~2, 2);

Real(freezingFahr);

Math.sqrt real(2);

Math.sqrt(real(2));

Math.sqrt(real 3);

• Note ~ is unary minus

• min and max take just two

input arguments, but that

can be fixed!

• Real converts ints to real

• Parens can sometimes be

omitted

35

- Int.abs ~3;

val it = 3 : int

- Int.sign ~3;

val it = ~1 : int

- Int.max (4, 7);

val it = 7 : int

- Int.min (~2, 2);

val it = ~2 : int

- real(freezingFahr);

val it = 32.0 : real

- Math.sqrt real(2);

stdIn:57.1-57.18 Error: operator and operand don't agree [tycon mismatch]

operator domain: real

operand: int -> real

in expression:

Math.sqrt real

- Math.sqrt(real(2));

val it = 1.41421356237 : real

- Math.sqrt(real 3);

val it = 1.73205080757 : real

-

36

Strings

• Delimited by double quotes

• the caret mark ^ is used for string concatenation,

e.g. “house”^”cat”

• \n is used for newline, as in C and C++

37

Lists in ML

• Objects in a list must be of the same type

– [1,2,3];

– [“dog”, “cat”, “moose”];

• The empty list is written [] or nil

38

Making Lists

• The @ operator is used to concatenate two lists of

the same type

• The functions hd and tl give the first element of the

list, and the rest of the list, respectively

39

List Operations

- val list1 = [1,2,3];

val list1 = [1,2,3] : int list

- val list2 = [3,4,5];

val list2 = [3,4,5] : int list

- list1@list2;

val it = [1,2,3,3,4,5] : int list

- hd list1;

val it = 1 : int

- tl list2;

val it = [4,5] : int list

40

Strings and Lists

• The explode function converts a string into a list of

characters

• The implode function converts a list of characters

into a string

• Examples:

- explode("foo");

val it = [#"f",#"o",#"o"] : char list

- implode [#"c",#"a",#"t"];

val it = "cat" : string

-

41

Heads and Tails

• The cons operator :: takes an element and

prepends it to a list of that same type

• For example, the expression 1::[2,3] results in the

list [1,2,3]

• What’s the value of [1,2]::[[3,4], [5,6]] ?

42

Functions and Patterns

• Recall that min and max take just two arguments

• However, using the fact that, for example,

– min(a, b, c) = min(a, min(b, c))

43

Generalizing Min

• An example of ML pattern matching

– the cons notation x::xs is both a binary constructor and a

pattern

– cases aren’t supposed to overlap

fun multiMin (x: int) = x |

multiMin (x:int, y:int) = Int.min(x, y) |

multiMin (x::xs) = Int.min(x, multiMin(xs));

(* What’s wrong with above first attempt??? *)

44

Example

fun fact(n : int): int = if n = 0 then 1

else n * fact(n-1);

fun fact(0) = 1

| fact(n: int): int = n * fact(n-1);

45

List operations in ML (revisit)

• Lists are represented in square bracket with

elements separated by commas

– [1, 2, 3, 4]

• Empty list is specified by [] or nil

– [1, 2, 3, 4]

• You can construct a list using :: operator

– 1 :: [2, 3, 4]

• hd takes out head element from list and tl returns

remaining list without head element

– hd [1 , 2, 3]

– tl [1 , 2, 3]

46

List operations in ML

fun length([]) = 0

| length(h::t) = 1 + length(t);

fun append([], list2) = list2

| append(h::t, list2) = h :: append(t,list2);

47

Chapter Summary

• Functional programming languages use function application, conditional

expressions, recursion, and functional forms to control program execution

instead of imperative features such as variables and assignments

• LISP began as a purely functional language and later included imperative

features

• Scheme is a relatively simple dialect of LISP that uses static scoping

exclusively

• COMMON LISP is a large LISP-based language

• ML is a static-scoped and strongly typed functional language which

includes type inference, exception handling, and a variety of data

structures and abstract data types

• Haskell is a lazy functional language supporting infinite lists and set

comprehension.

• Purely functional languages have advantages over imperative alternatives,

but their lower efficiency on existing machine architectures has prevented

them from enjoying widespread use

