

1

Programming Languages:

Lecture 8

Chapter 8: Statement-level Control Structures

Jinwoo Kim
jwkim@jjay.cuny.edu

2

Chapter 8 Topics

 Introduction

 Selection Statements

 Iterative Statements

 Unconditional Branching

 Guarded Commands

 Conclusions

3

Levels of Control Flow

– Within expressions

– Among program units

– Among program statements

4

Control Statements: Evolution

 Control Statements: Statements provide capability of following
option other than simple assignment

– Selection

– Repetition of certain collection of statements

 FORTRAN I control statements were based directly on IBM
704 hardware

– Closely related to underline hardware

 Much research and argument in the 1960s about the issue

– One important result: It was proven that all algorithms
represented by flowcharts can be coded with only two-way
selection and pretest logical loops

– Unconditional branch statement is proven to be superfluous

5

Control Structure

 A control structure is a control statement and the
statements whose execution it controls

 Design question

– Should a control structure have multiple entries?

– Whether the execution of all selection and iteration statements
(which control the execution of code segments) code segments
always begins with the first statement in the segment?

– Writability (Flexibility) vs. Readability

– How about multiple exits?

6

Selection Statements

 A selection statement provides the means of
choosing between two or more execution paths

 Two general categories:

– Two-way selectors

– Multiple-way (n-way) selectors

7

Two-Way Selection Statements

 General form:

 if control_expression

 then clause

 else clause

 Design Issues:

– What is the form and type of the control expression?

– E.g. Use of Arithmetic or Boolean expression

– How are the then and else clauses specified?

– How should the meaning of nested selectors be
specified?

8

Two-Way Selection: Examples

 FORTRAN: IF (boolean_expr) statement

 Problem: can select only a single statement; to select more, a
GOTO must be used, as in the following example

 IF (.NOT. condition) GOTO 20

 ...

 20 CONTINUE

 Negative logic is bad for readability

 This problem was solved in FORTRAN 77

 Most later languages allow compounds for the selectable
segment of their single-way selectors

9

Two-Way Selection: Examples

 ALGOL 60:

 if (boolean_expr)

 then statement (then clause)

 else statement (else clause)

 The statements could be single or compound

10

Nesting Selectors

 Java example

 if (sum == 0)

 if (count == 0)

 result = 0;

 else result = 1;

 Which if gets the else?

 Java's static semantics rule: else matches with the
nearest unpaired if

11

Nesting Selectors (continued)

 To force an alternative semantics, compound
statements may be used:

 if (sum == 0) {

 if (count == 0)

 result = 0;

 }

 else result = 1;

 The above solution is used in C, C++, and C#

 Perl requires that all then and else clauses to be
compound

12

Multiple-Way (n-way) Selection Statements

 Allow the selection of one of any number of
statements or statement groups

 Design Issues:

1. What is the form and type of the control expression?

2. How are the selectable segments specified?

3. Is execution flow through the structure restricted to
include just a single selectable segment?

4. What is done about unrepresented expression values?

13

Multiple-Way Selection (n-way) : Examples

 Early multiple selectors:
– FORTRAN arithmetic IF (a three-way selector)

 IF (arithmetic expression) N1, N2, N3

– Segments require GOTOs

– Not encapsulated (selectable segments could be
anywhere)

14

Multiple-Way Selection (n-way) : Examples

 Modern multiple selectors
– C’s switch statement

 switch (expression) {

 case const_expr_1: stmt_1;

 …

 case const_expr_n: stmt_n;

 [default: stmt_n+1]

 }

15

Multiple-Way Selection (n-way) : Examples

 switch (index) {

 case 1:

 case 3: odd += 1;

 sumodd += index;

 case 2:

 case 4: even += 1;

 sumeven += index;

 default: cout << “Error”;

 }

16

Multiple-Way Selection (n-way) : Examples

 switch (index) {

 case 1:

 case 3: odd += 1;

 sumodd += index;

 break;

 case 2:

 case 4: even += 1;

 sumeven += index;

 break;

 default: cout << “Error”;

 }

17

Multiple-Way Selection (n-way) : Examples

 Design choices for C’s switch statement

1. Control expression can be only an integer type

2. Selectable segments can be statement sequences, blocks, or
compound statements

3. Any number of segments can be executed in one execution of
the construct (there is no implicit branch at the end of
selectable segments)

4. default clause is for unrepresented values (if there is no
default, the whole statement does nothing)

18

Multiple-Way Selection (n-way) : Examples

 The Ada case statement

 case expression is

 when choice list => stmt_sequence;

 …

 when choice list => stmt_sequence;

 [when others => stmt_sequence;]

 end case;

 More reliable than C’s switch (once a
stmt_sequence execution is completed, control is
passed to the first statement after the case
statement

19

Multiple-Way Selection (n-way) : Examples

 C# switch statement apply reliability concern over C based
switch
– In C#, every selectable segment must end with an explicit unconditional

branch statement
– Either break or goto

 switch (value) {

 case -1: Negatives++;

 break;

 case 0: Zeros++;

 goto case 1;

 case 1: Positives++;

 break;

 default: Console.WriteLine(“Error in swith \n”);

 }

20

Multiple-Way (n-way) Selection Using if

 Multiple Selectors can appear as direct extensions to
two-way selectors, using else-if clauses, for example in
Ada:

 if ...

 then ...

 elsif ...

 then ...

 elsif ...

 then ...

 else ...

 end if

21

Iterative Statements

 The repeated execution of a statement or
compound statement is accomplished either by
iteration or recursion

 General design issues for iteration control
statements:

1. How is iteration controlled?

2. Where is the control mechanism in the loop?

22

Counter-Controlled Loops

 A counting iterative statement has a loop variable, and
a means of specifying the initial and terminal, and
stepsize values

 Design Issues:

1. What are the type and scope of the loop variable?

2. What is the value of the loop variable at loop termination?

3. Should it be legal for the loop variable or loop parameters to
be changed in the loop body, and if so, does the change affect
loop control?

4. Should the loop parameters be evaluated only once, or once
for every iteration?

23

Iterative Statements: Examples

 FORTRAN 90 syntax

 DO label var = start, finish [, stepsize]

 Stepsize can be any value but zero

 Parameters can be expressions

 Design choices:

1. Loop variable must be INTEGER

2. Loop variable always has its last value

3. The loop variable cannot be changed in the loop, but the
parameters can; because they are evaluated only once, it does
not affect loop control

4. Loop parameters are evaluated only once

24

Iterative Statements: Examples

 FORTRAN 95 : a second form:
 [name:] DO variable = initial, terminal [,stepsize]

 …

 END DO [name]

– Loop variable must be an INTEGER

25

Iterative Statements: Examples

 Ada
 for var in [reverse] discrete_range loop

...

 end loop;

 A discrete range is a sub-range of an integer or
enumeration type

 Scope of the loop variable is the range of the loop

 Loop variable is implicitly undeclared after loop
termination

26

Iterative Statements: Examples

 C’s for statement
for ([expr_1] ; [expr_2] ; [expr_3]) statement

 The expressions can be whole statements, or even statement
sequences, with the statements separated by commas

– The value of a multiple-statement expression is the value of the
last statement in the expression

 There is no explicit loop variable

 Everything can be changed in the loop

 The first expression is evaluated once, but the other two are
evaluated with each iteration

27

Iterative Statements: Examples

 C++ differs from C in two ways:

1. The control expression can also be Boolean

2. The initial expression can include variable definitions
(scope is from the definition to the end of the loop body)

 Java and C#

– Differs from C++ in that the control expression must be
Boolean

28

C and C++’s Iterative Statements: Examples

void main(){

 for(;;);

}

void main(){

int count1;

float count2,sum;

for(count1 = 0, count2 = 1.0; count1 <= 10 && count2 <= 100.0;

 sum = ++count1 + count2, count2 = 2.5);

cout << "count1 is " << count1 << endl;

cout << "count2 is " << count2 << endl;

cout << "sum is " << sum << endl;

}

void main(){

 float count2 = 1.0;

 float sum = 0.0;

 for(int count1 = 0; count1 <= 10 && count2 <= 100.0;

 sum = ++count1 + count2, count2 = 2.5){

 cout << "count1 is " << count1 << endl;

 cout << "count2 is " << count2 << endl;

 cout << "sum is " << sum << endl;

 }

}

29

Iterative Statements: Logically-Controlled Loops

 Repetition control is based on a Boolean

 Design issues:

– Pre-test or post-test?

– Should the logically controlled loop be a special case of
the counting loop statement ? expression rather than a
counter

 General forms:

 while (ctrl_expr) do

 loop body loop body

 while (ctrl_expr)

30

Iterative Statements: Logically-Controlled Loops: Examples

 Pascal has separate pre-test and post-test logical loop
statements (while-do and repeat-until)

 C and C++ also have both, but the control expression for
the post-test version is treated just like in the pre-test
case (while-do and do- while)

 Java is like C, except the control expression must be
Boolean (and the body can only be entered at the
beginning -- Java has no goto)

31

Iterative Statements: Logically-Controlled Loops: Examples

 Ada has a pretest version, but no post-test

 FORTRAN 77 and 90 have neither

 Perl has two pre-test logical loops, while and
until, but no post-test logical loop

32

Iterative Statements: User-Located Loop Control Mechanisms

 Sometimes it is convenient for the programmers to
decide a location for loop control (exit) other than
top or bottom of the loop

 Simple design for single loops (e.g., break)

 Design issues for nested loops

1. Should the conditional be part of the exit?

2. Should control be transferable out of more than one loop?

33

Iterative Statements: User-Located Loop Control Mechanisms
break and continue

 C , C++, and Java: break statement

– Unconditional unlabeled exit for any loop or switch

– one level only

 Java and C# have a labeled break statement:
control transfers to the label

 An alternative: continue statement

– Unlabeled control statement

– it skips the remainder of this iteration, but does not exit the
loop

34

Iterative Statements: User-Located Loop Control Mechanisms
break and continue

While (sum < 1000){

 getnext(value);

 if (value < 0) continue;

 sum += value;

}

While (sum < 1000){

 getnext(value);

 if (value < 0) break;

 sum += value;

}

outerLoop:

while (sum1 < 1000){

 getnext(value1);

 if (value1 == 0) continue;

 sum1 += value1;

 while (sum2 < 500){

 getnext(value2);

 if (value2 == 0) break;

 if (value2 < 0) break outerLoop;

 sum2 += value2;

 }

}

35

Iterative Statements: Iteration Based on Data Structures

 Number of elements of in a data structure control loop
iteration

 Control mechanism is a call to an iterator function that
returns the next element in some chosen order, if there
is one (else loop is terminated)

 C's for can be used to build a user-defined iterator:

 for (p=root; p==NULL; traverse(p)){

 }

36

Iterative Statements: Iteration Based on Data Structures
(continued)

 C#’s foreach statement iterates on the elements of
arrays and other collections:

 Strings[] = strList = {“Bob”, “Carol”, “Ted”};

 foreach (Strings name in strList)

 Console.WriteLine (“Name: {0}”, name);

 The notation {0} indicates the position in the string to be
displayed

37

Unconditional Branching

 Transfers execution control to a specified place in the program

 Represented one of the most heated debates in 1960’s and 1970’s

 Well-known mechanism: goto statement

 Major concern: Readability

 Some languages do not support goto statement (e.g., Module-2 and
Java)

 C# offers goto statement (can be used in switch statements)

 Loop exit statements are restricted and somewhat camouflaged
goto’s

38

Conclusion

 Variety of statement-level structures

 Choice of control statements beyond selection and
logical pretest loops is a trade-off between
language size and writability

 Functional and logic programming languages are
quite different control structures

39

Homework Questions

 Programming Exercise (P.388 of class textbook)

– Question 3.c (You can choose one language from C, C++, or Java)
– Rewrite the following code segment using a multiple-selection statement
 if ((k == 1) || (k == 2)) j = 2 * k - 1;

 if ((k == 3) || (k == 5)) j = 3 * k + 1;

 if (k == 4) j = 4 * k - 1;

 if ((k == 6) || (k == 7) || (k == 8)) j = k - 2;

– Question 4 (Rewrite it using no gotos or breaks)
 j = -3;

 for (i=0; i < 3; i++) {

 switch (j + 2) {

 case 3:

 case 2: j--; break;

 case 0: j += 2; break;

 default: j = 0;

 }

 if (j > 0) break;

 j = 3 – i;

}

 Problem Solving (P. 386 of class textbook)

– 4, 9

 Due date: One week from assigned date

– Please hand in printed (typed) form
– I do not accept any handwritten assignment

– Exception: pictures

