CULLEGE

CRIMINAL
JUSTICE

i

Programming Languages:
Lecture 7

Chapter 7: Expressions and Assignment
Statements

Jinwoo Kim
jwkim@jjay.cuny.edu

Chapter 7 Topics

e Introduction

e Arithmetic Expressions

e Overloaded Operators

e Type Conversions

e Relational and Boolean Expressions
e Short-Circuit Evaluation

e Assignment Statements

e Mixed-Mode Assignment

iR Introduction

e Expressions are the fundamental means of
specifying computations in a programming
language

e To understand expression evaluation, need to be
familiar with the orders of operator and operand
evaluation

e Essence of imperative languages is dominant role
of assighment statements

Arithmetic Expressions

e Arithmetic evaluation was one of the motivations for
the development of the first programming
languages

e Arithmetic expressions consist of operators,
operands, parentheses, and function calls

iR Arithmetic Expressions: Design Issues

OF
CRIMINAL

JUSTICE

e Design issues for arithmetic expressions
— operator precedence rules
— operator associativity rules
— order of operand evaluation
— operand evaluation side effects
— operator overloading
— mode mixing expressions

Arithmetic Expressions: Operators

e A unary operator has one operand

e A binary operator has two operands

e A ternary operator has three operands

7

iR N Arithmetic Expressions: Operator Precedence Rules

JUSTICE

e The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated

— E.ga+b*c(whena=3,b=4,c=5)

e Typical precedence levels
— parentheses
— unary operators
— **(if the language supports it)
—
— o+ -

COLLEGE
CRIMINAL

iR N-rithmetic Expressions: Operator Associativity Rule

JUSTICE

The operator associativity rules for expression evaluation
define the order in which adjacent operators with the same
precedence level are evaluated

— E.ga-b+c-d

Typical associativity rules

— Left to right, except **, which is right to left
—Eg.a*b*c
— Fortran and Ada handle above expression differently

APL is different

— all operators have equal precedence and all operators associate
right to left

Precedence and associativity rules can be overridden with
parentheses

iR

COLLEGE
OF
CRIMINAL
JUSTICE

Arithmetic Expressions: Parentheses

Programmers can alter the precedence and associativity rules
by placing parentheses in expressions

— E.g.(a+b)*c

Languages that allow parentheses in arithmetic expressions
could dispense with all precedence rules and simply associate
all operators either left to right or right to left

— The programmer can specify desired order of evaluation with
parentheses

— Advantage: Simple, now programmer does not need to
remember any precedence or associative rules

— APL follows this approach
- Eg.AxB+C

— Disadvantage: Can makes writing expressions more tedious
which can also yields readability problems

iRF Arithmetic Expressions: Conditional Expressions

OF
CRIMINAL

JUSTICE

e Conditional Expressions

— EXxpressionl ? Expression2 : expression3
— C-based languages (e.g., C, C++)

— An example:
average = (count == 0)? 0 : sum / count
— Evaluates as if written like
if (count == 0)
average = 0;
else

average = sum / count;

iR%MArithmetic Expressions: Operand Evaluation Order

JUSTICE

e Operand evaluation order
1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory; sometimes
the constant is in the machine language instruction

3. Parenthesized expressions: evaluate all operands and
operators first

e Operand evaluation order becomes interesting
when it does have side effects

11

12

ixﬂmArithmetic Expressions: Potentials for Side Effects

CRIMINAL

JUSTICE

e Functional side effects: when a function changes a two-way
parameter or a non-local variable

e Problem with functional side effects:

— When a function referenced in an expression alters another
operand of the expression

— e.g., function changes a global variable:
int a = 10;

int funl () {
a = 20;
return 3;

}

int fun2 () {
a =a + funl();

}

void main () {
fun2 () ;
}

COLLEGE
OF
CRIMINAL
JUSTICE

Functional Side Effects

e Two possible solutions to the problem

1.

Write the language definition to disallow functional side
effects

No two-way parameters in functions
No non-local references in functions
Advantage: it works!

Disadvantage: inflexibility of two-way parameters and non-local
references

Write the language definition to demand that operand
evaluation order be fixed

Disadvantage: limits some compiler optimizations

13

iR

COLLEGE
OF
CRIMINAL
JUSTICE

Overloaded Operators

Use of an operator for more than one purpose is
called operator overloading

Some are common (e.g., + for int and float)

Some are potential trouble (e.g., & in C and C++)

— Loss of compiler error detection (omission of an operand
should be a detectable error)

— Some loss of readability

— Can be avoided by introduction of new symbols

— e.g., Pascal’s div for integer division
— avg :=sum/ count (floating point division in Pascal)

— avg = sum / count (integer division in C or C++ if sum and count are
integer type)

14

iR

COLLEGE
OF
CRIMINAL
JUSTICE

Overloaded Operators (continued)

C++ and Ada allow user-defined overloaded
operators

— Exceptions: . ::

Potential problems:
— Users can define nonsense operations

— E.g. User can define + to multiply
— Readability may suffer, even when the operators make
sense

— E.g. Seeing an * operator in a program, the reader must find both
the types of the operands and the definition of the operators to
determine its meaning

15

iR Type Conversions

OF
C
JUSTICE

e A narrowing conversion is one that converts an

object to a type that cannot include all of the values
of the original type

— €.0.,, float toint

e A widening conversion is one in which an object is
converted to a type that can include at least
approximations to all of the values of the original
type

— e.0.,, int 1o float

— Usually safe but may result in certain problem

16

iR

COLLEGE
OF
CRIMINAL
JUSTICE

Implicit Type Conversions

A mixed-mode expression is one that has operands of
different types

A coercion is an implicit type conversion
— Initiated by compiler
— Gives flexibility to the language

Disadvantage of coercions:

— Reliability: They decrease in the type error detection ability of the
compiler

17

iR

COLLEGE
OF
CRIMINAL
JUSTICE

Implicit Type Conversions (Continued)

In most languages, all numeric types are coerced In
expressions, using widening conversions

In Ada, there are virtually no coercions in expressions
— Does not usually allow operand type mixing

18

iR

COLLEGE
OF
CRIMINAL
JUSTICE

Explicit Type Conversions

Explicit Type Conversions

— Type conversion explicitly requested by programmer

Called casting in C-based language

Examples
— C: (1int) angle
— Ada: Float (sum)

Note that Ada’s syntax is similar to function calls

19

iR

COLLEGE
OF
CRIMINAL
JUSTICE

Type Conversions: Errors in Expressions

Causes
— Inherent limitations of arithmetic
—e.g., division by zero

— Limitations of computer arithmetic

— e.g. overflow or underflow

Often ignored by the run-time system or
sometimes calls error handling routine called
“exceptions”

20

iR

COLLEGE
OF
CRIMINAL
JUSTICE

Relational and Boolean Expressions

Relational Expressions

— Use relational operators and operands of various types

— Typical types for relational operators: numeric, string, ordinal
types

— Evaluate to some Boolean representation

— Operator symbols used vary somewhat among languages
(!=, /=, .NE. <>)

21

iR Relational and Boolean Expressions

OF
CRIMINAL

JUSTICE

e Boolean Expressions
— Operands are Boolean and the result is Boolean
— Example operators

FORTRAN 77 FORTRANO90 C Ada

.AND. and && and
.OR. or | | or
.NOT. not ! not

XOr

iR

“ Relational and Boolean Expressions: No Boolean Typein C

COLLEGE
OF
CRIMINAL
JUSTICE

e C has no Boolean type
— ltuses int type with O for false and nonzero for true

e One odd characteristic of C's expressions:

a > b > c isalegal expression, but the result is
not what you might expect:
— Left operator is evaluated, producing O or 1

— The evaluation result is then compared with the third
operand (i.e., c)

23

24

iR “ Relational and Boolean Expressions: Operator Precedence

JUSTICE

e Precedence of C-based operators
postfix ++, -—--
unary +, -, prefix ++, --, !
*, /, S
binary +, -
<, >, <=, >=

== | =

4

& &
|

iR

COLLEGE
OF
CRIMINAL
JUSTICE

25
Short Circuit Evaluation

An expression in which the result is determined without
evaluating all of the operands and/or operators

Example: (13*a) * (b/13-1)
If a is zero, there is no need to evaluate (b/13-1)
But unlike Boolean expression, it is not easy to detect
shortcut in arithmetic expression

Better Example: (a >= 0) s& (b < 10)
This shortcut can be easily discovered during execution

Problem with non-short-circuit evaluation

index = 0;

while (index <= length) && (LIST[index] !'= wvalue)
index++;

— When index=length, LIST [index] will cause an indexing problem
(assuming LIST has length -1 elements)

iR Short Circuit Evaluation (continued)

OF
CRIMINAL

JUSTICE

e (C, C++, and Java: use short-circuit evaluation for the usual
Boolean operators (&& and | |), but also provide bitwise
Boolean operators that are not short circuit (& and |)

e Ada: programmer can specify either (short-circuit is specified
with and then and or else)

e Short-circuit evaluation exposes the potential problem of side
effects in expressions

— €e.g. (a > b) || (b++ / 3)

26

iR

[Assignment Statements

COLLEGE
OF

CRIMINAL
JUSTICE

e The general syntax

<target var> <assign operator> <expression>

e The assignment operator
= FORTRAN, BASIC, PL/I, C, C++, Java
:= ALGOLSs, Pascal, Ada

e = can be bad when it is overloaded for the
relational operator for equality

27

COLLEGE
JUSTICE

CRIMINAL

Assignment Statements: Conditional Targets

Conditional targets (C, C++, and Java)

(flag)? total : subtotal = 0

Which is equivalent to

if (flag)
total = 0
else

subtotal = 0

28

iRF Assignment Statements: Compound Operators

JUS ICE

e A shorthand method of specifying a commonly
needed form of assignment

— Destination variable also appear as the first operand in the
expression on the right side

e Introduced in ALGOL; adopted by C

e Example
a =a+Db

IS written as

29

30

iR wﬂssignment Statements: Unary Assignment Operators

OF
CRIMINAL
JUSTICE

e Unary assignment operators in C-based languages
combine increment and decrement operations with
assignment

e Examples
sum = ++count (count incremented, assigned to sum)
sum = count++ (count assigned to sum, incremented)
count++ (count incremented)
-count++ (count incremented then negated)

Assignment as an Expression

e InC, C++, and Java, the assignment statement
produces a result and can be used as operands

e An example:
while ((ch = getchar())!= EOF) {..}

ch = getchar () Is carried out; the result (assigned
to ch) Is used as a conditional value for the while

Sstatement

31

iR Mixed-Mode Assignment

OF
CRIMINAL

JUSTICE

e Assignment statements can also be mixed-mode, for
example

int a, b;
float c;
c = a / b;

e In Fortran and C-based languages, coercion is freely
allowed

— E.g., int to float or float to int

e In C# and Java, only widening assignment coercions
are done

e |n Ada, there is no assignment coercion

iR

33
Summary

COLLEGE
OF
CRIMINAL
JUSTICE

e EXpressions

e Operator precedence and associativity
e Qperator overloading

e Mixed-type expressions

e Various forms of assignment

iR

Homework #3 (part 3)

COLLEGE
OF
CRIMINAL
JUSTICE

Problem Solving (P. 345 of class textbook)
— 8,13

Due date: One week from assigned date
— Please hand in printed (typed) form

— I do not accept any handwritten assignment
— Exception: pictures

34

