

1

Programming Languages:

Lecture 7

Chapter 7: Expressions and Assignment

Statements

Jinwoo Kim
jwkim@jjay.cuny.edu

2

Chapter 7 Topics

 Introduction

 Arithmetic Expressions

 Overloaded Operators

 Type Conversions

 Relational and Boolean Expressions

 Short-Circuit Evaluation

 Assignment Statements

 Mixed-Mode Assignment

3

Introduction

 Expressions are the fundamental means of

specifying computations in a programming

language

 To understand expression evaluation, need to be

familiar with the orders of operator and operand

evaluation

 Essence of imperative languages is dominant role

of assignment statements

4

Arithmetic Expressions

 Arithmetic evaluation was one of the motivations for

the development of the first programming

languages

 Arithmetic expressions consist of operators,

operands, parentheses, and function calls

5

Arithmetic Expressions: Design Issues

 Design issues for arithmetic expressions

– operator precedence rules

– operator associativity rules

– order of operand evaluation

– operand evaluation side effects

– operator overloading

– mode mixing expressions

6

Arithmetic Expressions: Operators

 A unary operator has one operand

 A binary operator has two operands

 A ternary operator has three operands

7

Arithmetic Expressions: Operator Precedence Rules

 The operator precedence rules for expression

evaluation define the order in which “adjacent”

operators of different precedence levels are

evaluated

– E.g. a + b * c (when a = 3, b = 4, c = 5)

 Typical precedence levels

– parentheses

– unary operators

– ** (if the language supports it)

– *, /

– +, -

8

Arithmetic Expressions: Operator Associativity Rule

 The operator associativity rules for expression evaluation

define the order in which adjacent operators with the same

precedence level are evaluated

– E.g. a – b + c - d

 Typical associativity rules

– Left to right, except **, which is right to left

– E.g. a ** b ** c

– Fortran and Ada handle above expression differently

 APL is different

– all operators have equal precedence and all operators associate

right to left

 Precedence and associativity rules can be overridden with

parentheses

9

Arithmetic Expressions: Parentheses

 Programmers can alter the precedence and associativity rules

by placing parentheses in expressions

– E.g. (a + b) * c

 Languages that allow parentheses in arithmetic expressions

could dispense with all precedence rules and simply associate

all operators either left to right or right to left

– The programmer can specify desired order of evaluation with

parentheses

– Advantage: Simple, now programmer does not need to

remember any precedence or associative rules

– APL follows this approach

– E.g. A x B + C

– Disadvantage: Can makes writing expressions more tedious

which can also yields readability problems

10

Arithmetic Expressions: Conditional Expressions

 Conditional Expressions

– Expression1 ? Expression2 : expression3

– C-based languages (e.g., C, C++)

– An example:

 average = (count == 0)? 0 : sum / count

– Evaluates as if written like

 if (count == 0)

 average = 0;

 else

 average = sum / count;

11

Arithmetic Expressions: Operand Evaluation Order

 Operand evaluation order

1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory; sometimes

the constant is in the machine language instruction

3. Parenthesized expressions: evaluate all operands and

operators first

 Operand evaluation order becomes interesting

when it does have side effects

12

Arithmetic Expressions: Potentials for Side Effects

 Functional side effects: when a function changes a two-way

parameter or a non-local variable

 Problem with functional side effects:

– When a function referenced in an expression alters another

operand of the expression

– e.g., function changes a global variable:

 int a = 10;

 int fun1(){

 a = 20;

 return 3;

 }

 int fun2(){

 a = a + fun1();

 }

 void main(){

 fun2();

 }

13

Functional Side Effects

 Two possible solutions to the problem

1. Write the language definition to disallow functional side

effects

– No two-way parameters in functions

– No non-local references in functions

– Advantage: it works!

– Disadvantage: inflexibility of two-way parameters and non-local

references

2. Write the language definition to demand that operand

evaluation order be fixed

– Disadvantage: limits some compiler optimizations

14

Overloaded Operators

 Use of an operator for more than one purpose is

called operator overloading

 Some are common (e.g., + for int and float)

 Some are potential trouble (e.g., & in C and C++)

– Loss of compiler error detection (omission of an operand

should be a detectable error)

– Some loss of readability

– Can be avoided by introduction of new symbols

– e.g., Pascal’s div for integer division

– avg := sum / count (floating point division in Pascal)

– avg = sum / count (integer division in C or C++ if sum and count are

integer type)

15

Overloaded Operators (continued)

 C++ and Ada allow user-defined overloaded

operators

– Exceptions: . ::

 Potential problems:

– Users can define nonsense operations

– E.g. User can define + to multiply

– Readability may suffer, even when the operators make

sense

– E.g. Seeing an * operator in a program, the reader must find both

the types of the operands and the definition of the operators to

determine its meaning

16

Type Conversions

 A narrowing conversion is one that converts an

object to a type that cannot include all of the values

of the original type

– e.g., float to int

 A widening conversion is one in which an object is

converted to a type that can include at least

approximations to all of the values of the original

type

– e.g., int to float

– Usually safe but may result in certain problem

17

Implicit Type Conversions

 A mixed-mode expression is one that has operands of

different types

 A coercion is an implicit type conversion

– Initiated by compiler

– Gives flexibility to the language

 Disadvantage of coercions:

– Reliability: They decrease in the type error detection ability of the

compiler

18

Implicit Type Conversions (Continued)

 In most languages, all numeric types are coerced in

expressions, using widening conversions

 In Ada, there are virtually no coercions in expressions

– Does not usually allow operand type mixing

19

Explicit Type Conversions

 Explicit Type Conversions

– Type conversion explicitly requested by programmer

 Called casting in C-based language

 Examples

– C: (int) angle

– Ada: Float (sum)

 Note that Ada’s syntax is similar to function calls

20

Type Conversions: Errors in Expressions

 Causes

– Inherent limitations of arithmetic

– e.g., division by zero

– Limitations of computer arithmetic

– e.g. overflow or underflow

 Often ignored by the run-time system or

sometimes calls error handling routine called

“exceptions”

21

Relational and Boolean Expressions

 Relational Expressions

– Use relational operators and operands of various types

– Typical types for relational operators: numeric, string, ordinal

types

– Evaluate to some Boolean representation

– Operator symbols used vary somewhat among languages
(!=, /=, .NE. <>)

22

Relational and Boolean Expressions

 Boolean Expressions

– Operands are Boolean and the result is Boolean

– Example operators

FORTRAN 77 FORTRAN 90 C Ada

 .AND. and && and

 .OR. or || or

 .NOT. not ! not

 xor

23

Relational and Boolean Expressions: No Boolean Type in C

 C has no Boolean type

– It uses int type with 0 for false and nonzero for true

 One odd characteristic of C’s expressions:

 a > b > c is a legal expression, but the result is

not what you might expect:

– Left operator is evaluated, producing 0 or 1

– The evaluation result is then compared with the third
operand (i.e., c)

24

Relational and Boolean Expressions: Operator Precedence

 Precedence of C-based operators

postfix ++, --

unary +, -, prefix ++, --, !

*,/,%

binary +, -

<, >, <=, >=

==, !=

&&

||

25

Short Circuit Evaluation

 An expression in which the result is determined without
evaluating all of the operands and/or operators

 Example: (13*a) * (b/13–1)

If a is zero, there is no need to evaluate (b/13-1)

But unlike Boolean expression, it is not easy to detect

shortcut in arithmetic expression

 Better Example: (a >= 0) && (b < 10)

This shortcut can be easily discovered during execution

 Problem with non-short-circuit evaluation
index = 0;

while (index <= length) && (LIST[index] != value)

 index++;

– When index=length, LIST [index] will cause an indexing problem
(assuming LIST has length -1 elements)

26

Short Circuit Evaluation (continued)

 C, C++, and Java: use short-circuit evaluation for the usual
Boolean operators (&& and ||), but also provide bitwise

Boolean operators that are not short circuit (& and |)

 Ada: programmer can specify either (short-circuit is specified
with and then and or else)

 Short-circuit evaluation exposes the potential problem of side

effects in expressions

– e.g. (a > b) || (b++ / 3)

27

Assignment Statements

 The general syntax
<target_var> <assign_operator> <expression>

 The assignment operator

= FORTRAN, BASIC, PL/I, C, C++, Java

:= ALGOLs, Pascal, Ada

 = can be bad when it is overloaded for the
relational operator for equality

28

Assignment Statements: Conditional Targets

 Conditional targets (C, C++, and Java)
(flag)? total : subtotal = 0

Which is equivalent to

if (flag)

 total = 0

else

 subtotal = 0

29

Assignment Statements: Compound Operators

 A shorthand method of specifying a commonly

needed form of assignment

– Destination variable also appear as the first operand in the

expression on the right side

 Introduced in ALGOL; adopted by C

 Example
a = a + b

is written as

a += b

30

Assignment Statements: Unary Assignment Operators

 Unary assignment operators in C-based languages

combine increment and decrement operations with

assignment

 Examples

sum = ++count (count incremented, assigned to sum)

sum = count++ (count assigned to sum, incremented)

count++ (count incremented)

-count++ (count incremented then negated)

31

Assignment as an Expression

 In C, C++, and Java, the assignment statement

produces a result and can be used as operands

 An example:

 while ((ch = getchar())!= EOF){…}

 ch = getchar() is carried out; the result (assigned

to ch) is used as a conditional value for the while

statement

32

Mixed-Mode Assignment

 Assignment statements can also be mixed-mode, for

example

int a, b;

float c;

c = a / b;

 In Fortran and C-based languages, coercion is freely

allowed

– E.g., int to float or float to int

 In C# and Java, only widening assignment coercions

are done

 In Ada, there is no assignment coercion

33

Summary

 Expressions

 Operator precedence and associativity

 Operator overloading

 Mixed-type expressions

 Various forms of assignment

34

Homework #3 (part 3)

 Problem Solving (P. 345 of class textbook)

– 8,13

 Due date: One week from assigned date

– Please hand in printed (typed) form

– I do not accept any handwritten assignment

– Exception: pictures

