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Chapter 7 Topics

e Introduction

e Arithmetic Expressions

e Overloaded Operators

e Type Conversions

e Relational and Boolean Expressions
e Short-Circuit Evaluation

e Assignment Statements

e Mixed-Mode Assignment




iR Introduction

e Expressions are the fundamental means of
specifying computations in a programming
language

e To understand expression evaluation, need to be
familiar with the orders of operator and operand
evaluation

e Essence of imperative languages is dominant role
of assighment statements



Arithmetic Expressions

e Arithmetic evaluation was one of the motivations for
the development of the first programming
languages

e Arithmetic expressions consist of operators,
operands, parentheses, and function calls
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e Design issues for arithmetic expressions
— operator precedence rules
— operator associativity rules
— order of operand evaluation
— operand evaluation side effects
— operator overloading
— mode mixing expressions




Arithmetic Expressions: Operators

e A unary operator has one operand

e A binary operator has two operands

e A ternary operator has three operands
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e The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated

— E.ga+b*c(whena=3,b=4,c=5)

e Typical precedence levels
— parentheses
— unary operators
— **(if the language supports it)
—
— o+ -
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The operator associativity rules for expression evaluation
define the order in which adjacent operators with the same
precedence level are evaluated

— E.ga-b+c-d

Typical associativity rules

— Left to right, except **, which is right to left
—Eg.a*b*c
— Fortran and Ada handle above expression differently

APL is different

— all operators have equal precedence and all operators associate
right to left

Precedence and associativity rules can be overridden with
parentheses
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Arithmetic Expressions: Parentheses

Programmers can alter the precedence and associativity rules
by placing parentheses in expressions

— E.g.(a+b)*c

Languages that allow parentheses in arithmetic expressions
could dispense with all precedence rules and simply associate
all operators either left to right or right to left

— The programmer can specify desired order of evaluation with
parentheses

— Advantage: Simple, now programmer does not need to
remember any precedence or associative rules

— APL follows this approach
- Eg.AxB+C

— Disadvantage: Can makes writing expressions more tedious
which can also yields readability problems
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e Conditional Expressions

— EXxpressionl ? Expression2 : expression3
— C-based languages (e.g., C, C++)

— An example:
average = (count == 0)? 0 : sum / count
— Evaluates as if written like
if (count == 0)
average = 0;
else

average = sum / count;
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e Operand evaluation order
1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory; sometimes
the constant is in the machine language instruction

3. Parenthesized expressions: evaluate all operands and
operators first

e Operand evaluation order becomes interesting
when it does have side effects
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e Functional side effects: when a function changes a two-way
parameter or a non-local variable

e Problem with functional side effects:

— When a function referenced in an expression alters another
operand of the expression

— e.g., function changes a global variable:
int a = 10;

int funl () {
a = 20;
return 3;

}

int fun2 () {
a =a + funl();

}

void main () {
fun2 () ;
}
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Functional Side Effects

e Two possible solutions to the problem

1.

Write the language definition to disallow functional side
effects

No two-way parameters in functions
No non-local references in functions
Advantage: it works!

Disadvantage: inflexibility of two-way parameters and non-local
references

Write the language definition to demand that operand
evaluation order be fixed

Disadvantage: limits some compiler optimizations
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Overloaded Operators

Use of an operator for more than one purpose is
called operator overloading

Some are common (e.g., + for int and float)

Some are potential trouble (e.g., & in C and C++)

— Loss of compiler error detection (omission of an operand
should be a detectable error)

— Some loss of readability

— Can be avoided by introduction of new symbols

— e.g., Pascal’s div for integer division
— avg :=sum/ count (floating point division in Pascal)

— avg = sum / count (integer division in C or C++ if sum and count are
integer type)
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Overloaded Operators (continued)

C++ and Ada allow user-defined overloaded
operators

— Exceptions: . ::

Potential problems:
— Users can define nonsense operations

— E.g. User can define + to multiply
— Readability may suffer, even when the operators make
sense

— E.g. Seeing an * operator in a program, the reader must find both
the types of the operands and the definition of the operators to
determine its meaning
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e A narrowing conversion is one that converts an

object to a type that cannot include all of the values
of the original type

— €.0.,, float toint

e A widening conversion is one in which an object is
converted to a type that can include at least
approximations to all of the values of the original
type

— e.0.,, int 1o float

— Usually safe but may result in certain problem
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Implicit Type Conversions

A mixed-mode expression is one that has operands of
different types

A coercion is an implicit type conversion
— Initiated by compiler
— Gives flexibility to the language

Disadvantage of coercions:

— Reliability: They decrease in the type error detection ability of the
compiler
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Implicit Type Conversions (Continued)

In most languages, all numeric types are coerced In
expressions, using widening conversions

In Ada, there are virtually no coercions in expressions
— Does not usually allow operand type mixing
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Explicit Type Conversions

Explicit Type Conversions

— Type conversion explicitly requested by programmer

Called casting in C-based language

Examples
— C: (1int) angle
— Ada: Float (sum)

Note that Ada’s syntax is similar to function calls
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Type Conversions: Errors in Expressions

Causes
— Inherent limitations of arithmetic
—e.g., division by zero

— Limitations of computer arithmetic

— e.g. overflow or underflow

Often ignored by the run-time system or
sometimes calls error handling routine called
“exceptions”
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Relational and Boolean Expressions

Relational Expressions

— Use relational operators and operands of various types

— Typical types for relational operators: numeric, string, ordinal
types

— Evaluate to some Boolean representation

— Operator symbols used vary somewhat among languages
(!=, /=, .NE. <>)
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e Boolean Expressions
— Operands are Boolean and the result is Boolean
— Example operators

FORTRAN 77 FORTRANO90 C Ada

.AND. and && and
.OR. or | | or
.NOT. not ! not

XOr
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e C has no Boolean type
— ltuses int type with O for false and nonzero for true

e One odd characteristic of C's expressions:

a > b > c isalegal expression, but the result is
not what you might expect:
— Left operator is evaluated, producing O or 1

— The evaluation result is then compared with the third
operand (i.e., c)
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e Precedence of C-based operators
postfix ++, -—--
unary +, -, prefix ++, --, !
*, /, S
binary +, -
<, >, <=, >=

== | =

4

& &
|



iR

COLLEGE
OF
CRIMINAL
JUSTICE

25
Short Circuit Evaluation

An expression in which the result is determined without
evaluating all of the operands and/or operators

Example: (13*a) * (b/13-1)
If a is zero, there is no need to evaluate (b/13-1)
But unlike Boolean expression, it is not easy to detect
shortcut in arithmetic expression

Better Example: (a >= 0) s& (b < 10)
This shortcut can be easily discovered during execution

Problem with non-short-circuit evaluation

index = 0;

while (index <= length) && (LIST[index] !'= wvalue)
index++;

— When index=length, LIST [index] will cause an indexing problem
(assuming LIST has length -1 elements)



iR Short Circuit Evaluation (continued)

OF
CRIMINAL

JUSTICE

e (C, C++, and Java: use short-circuit evaluation for the usual
Boolean operators (&& and | |), but also provide bitwise
Boolean operators that are not short circuit (& and |)

e Ada: programmer can specify either (short-circuit is specified
with and then and or else)

e Short-circuit evaluation exposes the potential problem of side
effects in expressions

— €e.g. (a > b) || (b++ / 3)
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e The general syntax

<target var> <assign operator> <expression>

e The assignment operator
= FORTRAN, BASIC, PL/I, C, C++, Java
:= ALGOLSs, Pascal, Ada

e = can be bad when it is overloaded for the
relational operator for equality
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Conditional targets (C, C++, and Java)

(flag)? total : subtotal = 0

Which is equivalent to

if (flag)
total = 0
else

subtotal = 0
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e A shorthand method of specifying a commonly
needed form of assignment

— Destination variable also appear as the first operand in the
expression on the right side

e Introduced in ALGOL; adopted by C

e Example
a =a+Db

IS written as

29



30

iR wﬂssignment Statements: Unary Assignment Operators

OF
CRIMINAL
JUSTICE

e Unary assignment operators in C-based languages
combine increment and decrement operations with
assignment

e Examples
sum = ++count (count incremented, assigned to sum)
sum = count++ (count assigned to sum, incremented)
count++ (count incremented)
-count++ (count incremented then negated)



Assignment as an Expression

e InC, C++, and Java, the assignment statement
produces a result and can be used as operands

e An example:
while ((ch = getchar())!= EOF) {..}

ch = getchar () Is carried out; the result (assigned
to ch) Is used as a conditional value for the while

Sstatement

31



iR Mixed-Mode Assignment

OF
CRIMINAL

JUSTICE

e Assignment statements can also be mixed-mode, for
example

int a, b;
float c;
c = a / b;

e In Fortran and C-based languages, coercion is freely
allowed

— E.g., int to float or float to int

e In C# and Java, only widening assignment coercions
are done

e |n Ada, there is no assignment coercion
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e EXpressions

e Operator precedence and associativity
e Qperator overloading

e Mixed-type expressions

e Various forms of assignment
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Problem Solving (P. 345 of class textbook)
— 8,13

Due date: One week from assigned date
— Please hand in printed (typed) form

— I do not accept any handwritten assignment
— Exception: pictures
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