
1

Programming Languages:

Lecture 6

Chapter 6: Data Types

Jinwoo Kim
jwkim@jjay.cuny.edu

2
Chapter 6 Topics

• Introduction
• Primitive Data Types
• Character String Types
• User-Defined Ordinal Types
• Array Types
• Associative Arrays
• Record Types
• Union Types
• Pointer and Reference Types

3
Introduction

• A data type defines a collection of data objects and
a set of predefined operations on those objects

• A descriptor is the collection of the attributes of a
variable

• An object represents an instance of a user-defined
(abstract data) type

• One design issue for all data types: What
operations are defined and how are they
specified?

4
Primitive Data Types

• Almost all programming languages provide a set of
primitive data types
– Primitive data types: Those not defined in terms of other

data types

• Some primitive data types are merely reflections of
the hardware

• Others require little non-hardware support

5
Primitive Data Types: Integer

• Most common primitive numeric data type
– Many computers support several sizes of integers
– Almost always an exact reflection of the hardware so the

mapping is trivial

• Java’s signed integer sizes: byte, short, int,
long

• C++ and C# include unsigned integer types

6
Primitive Data Types: Floating Point

• Model real numbers, but only as approximations
• Languages for scientific use support at least two

floating-point types
– e.g., float and double;

– sometimes more

• Most newer machines use IEEE Floating-Point
Standard 754 format
– Single and Double precision

7
Primitive Data Types: Decimal

• Store a fixed number of decimal digits
– With decimal point at a fixed position in the value

• For business applications (money)
– Essential to COBOL
– C# offers a decimal data type

• Store a fixed number of decimal digits

• Advantage: accuracy

• Disadvantages: limited range, wastes memory

8
Primitive Data Types: Boolean

• Simplest of all types

• Range of values: two elements, one for “true” and
one for “false”

• Could be implemented as bits, but often as bytes
– Advantage: readability

9
Primitive Data Types: Character

• Stored as numeric codings

• Most commonly used coding: ASCII

• An alternative, 16-bit coding: Unicode
– Includes characters from most natural languages
– Originally used in Java
– C# and JavaScript also support Unicode

10
Character String Types

• Values are sequences of characters

• Design issues:
– Is it a primitive type or just a special kind of array?
– Should the length of strings be static or dynamic?

11
Character String Types Operations

• Typical operations:
– Assignment and copying
– Comparison (=, >, etc.)
– Catenation
– Substring reference
– Pattern matching

12

Character String Type in Certain Languages

• C and C++
– Not primitive
– Use char arrays and a library of functions (string.h)

that provide operations
– C++ provides string class

• SNOBOL4 (a string manipulation language)
– Primitive
– Many operations, including elaborate pattern matching

• Java
– Primitive via the String class

13
Character String Length Options

• Static: COBOL, Java’s String class

• Limited Dynamic Length: C and C++
– In C-based language, a special character is used to

indicate the end of a string’s characters, rather than
maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

• Ada supports all three string length options

14
Character String Type Evaluation

• Aid to writability
– Dealing with strings as arrays can be more cumbersome

than dealing with a primitive string type

• As a primitive type with static length, they are
inexpensive to provide--why not have them?
– Addition of strings as a primitive type to a language is not

costly in terms of language and compiler complexity

• Dynamic length is nice, but is it worth the expense?
– Advantage: flexibility
– Disadvantage: overhead from its implementation
– Often included only in languages that are interpreted

15
Character String Implementation

• Static length: compile-time descriptor

• Limited dynamic length: may need a run-time
descriptor for length (but not in C and C++)

• Dynamic length: need run-time descriptor
– Allocation/deallocation is the biggest implementation

problem

16
Compile- and Run-Time Descriptors

Compile-time
descriptor for
static strings

Run-time
descriptor for
limited dynamic
strings

17
User-Defined Ordinal Types

• An ordinal type is one in which the range of
possible values can be easily associated with the
set of positive integers

• Examples of primitive ordinal types in Java
– integer

– char

– Boolean

• In some languages, users can define two kinds of
ordinal types
– Enumeration
– Subrange

18
Enumeration Types

• All possible values, which are named constants, are
provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in more than

one type definition, and if so, how is the type of an
occurrence of that constant checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?

19
Evaluation of Enumerated Type

• Aid to readability
– e.g., no need to code a color as a number

• Aid to reliability
– e.g., compiler can check:

– operations (don’t allow colors to be added)
– No enumeration variable can be assigned a value outside its

defined range
– Ada, C#, and Java 5.0 provide better support for enumeration

than C++ because enumeration type variables in these
languages are not coerced into integer types

20
Subrange Types

• An ordered contiguous subsequence of an ordinal
type
– Example: 12..18 is a subrange of integer type

• Ada’s design
type Days is (mon, tue, wed, thu, fri, sat, sun);

subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := Day1;

21
Subrange Evaluation

• Aid to readability
– Make it clear to the readers that variables of subrange can

store only certain range of values

• Reliability
– Assigning a value to a subrange variable that is outside the

specified range is detected as an error

22

Implementation of User-Defined Ordinal Types

• Enumeration types are implemented as integers

• Subrange types are implemented like the parent
types with code inserted (by the compiler) to restrict
assignments to subrange variables

23
Array Types

• An array is an aggregate of homogeneous data
elements in which an individual element is identified
by its position in the aggregate, relative to the first
element.

24
Array Design Issues

• What types are legal for subscripts?
• Are subscripting expressions in element

references range checked?
• When are subscript ranges bound?
• When does allocation take place?
• What is the maximum number of subscripts?
• Can array objects be initialized?
• Are any kind of slices allowed?

25
Array Indexing

• Indexing (or subscripting) is a mapping from indices
to elements
array_name (index_value_list) ® an element

• Index Syntax
– FORTRAN, PL/I, Ada use parentheses

– Ada explicitly uses parentheses to show uniformity between
array references and function calls because both are mappings

– Most other languages use brackets

26
Arrays Index (Subscript) Types

• FORTRAN, C: integer only
• Pascal: any ordinal type (integer, Boolean, char,

enumeration)
• Ada: integer or enumeration (includes Boolean and

char)
• Java: integer types only
• C, C++, Perl, and Fortran do not specify range

checking
• Java, ML, C# specify range checking

27

Subscript Binding and Array Categories

• Static: subscript ranges are statically bound and
storage allocation is static (before run-time)
– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are statically
bound, but the allocation is done at declaration time
– Advantage: space efficiency

28

Subscript Binding and Array Categories (continued)

• Stack-dynamic: subscript ranges are dynamically
bound, and the storage allocation is dynamic (done
at run-time)
– Advantage: flexibility

– Size of an array need not be known until the array is to be used

• Fixed heap-dynamic: similar to fixed stack-dynamic:
storage binding is dynamic but fixed after allocation
– i.e., binding is done when requested and storage is

allocated from heap, not stack

29

Subscript Binding and Array Categories (continued)

• Heap-dynamic: binding of subscript ranges and
storage allocation is dynamic and can change any
number of times
– Advantage: flexibility (arrays can grow or shrink during

program execution)

30

Subscript Binding and Array Categories (continued)

• C and C++ arrays that include static modifier are static
• C and C++ arrays without static modifier are fixed

stack-dynamic
• Ada arrays can be stack-dynamic
• C and C++ provide fixed heap-dynamic arrays
• C# includes a second array class ArrayList that

provides fixed heap-dynamic
• Perl and JavaScript support heap-dynamic arrays

31
Static in C or C++

• The static keyword has several distinct meanings
– Life time of variable declared locally to function is only

during function calls
– What should I do if I want to retain values between function

calls?
– Why not use global variables then?

// Using a static variable in a function

void func() {

static int i = 0;

cout << "i = " << ++i << endl;

}

int main() {

for(int x = 0; x < 10; x++)

func();

}

32
Static in C or C++ (Continued)

• When static is applied to a function name or to a
variable that is outside of all functions, it means
“This name is unavailable outside of this file.”
– The function name or variable is local to the file

// File scope means only available in this file:

static int fs;

int main() {

fs = 1;

}

// Trying to reference fs in another file

extern int fs;

void func() {

fs = 100;

}

33
Array Initialization

• Some language allow initialization at the time of
storage allocation
– C, C++, Java, C# example
int list [] = {4, 5, 7, 83}

– Character strings in C and C++
char name [] = “freddie”;

– Arrays of strings in C and C++
char *names [] = {“Bob”, “Jake”, “Joe”];

– Java initialization of String objects
String[] names = {“Bob”, “Jake”, “Joe”};

34
Arrays Operations

• APL provides the most powerful array processing
operations for vectors and matrixes as well as unary
operators
– For example, to reverse column elements

• Ada allows array assignment but also catenation

• Fortran provides elemental operations because they are
between pairs of array elements
– For example, + operator between two arrays results in an array

of the sums of the element pairs of the two arrays

35
Compile-Time Descriptors

Single-dimensioned array Multi-dimensional array

36
Associative Arrays

• An associative array is an unordered collection of
data elements that are indexed by an equal
number of values called keys

– User defined keys must be stored

• Design issues: What is the form of references to
elements

37
Associative Arrays in Perl

• Names begin with %
%hi_temps = ("Mon" => 77, "Tue" => 79, “Wed”
=> 65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

Elements can be removed with delete
delete $hi_temps{"Tue"};

38
Record Types

• A record is a possibly heterogeneous aggregate of data
elements in which the individual elements are identified
by names

• Design issues:
– What is the syntactic form of references to the field?
– Are elliptical references allowed?

39
Definition of Records in Cobol

• COBOL uses level numbers to show nested records
– Level numbers in COBOL shows hierarchical structure
– Other languages usually use recursive definition

01 EMP-REC.

02 EMP-NAME.

05 FIRST PIC X(20).

05 MID PIC X(10).

05 LAST PIC X(20).

02 HOURLY-RATE PIC 99V99.

40
Definition of Records in COBOL (Continued)

• Record Field References
– field_name OF record_name_1 OF ... OF record_name_n

– record_name_1 : innermost record that contains the field_name
– record_name_n : outermost record that contains the field_name

– Example
– MID OF EMP-NAME OF EMP-REC

41
Definition of Records in Ada

• Record structures are indicated in an orthogonal way

type Emp_Name_Type is record
First: String (1..20);
Mid: String (1..10);

Last: String (1..20);

end record;
type Emp_Rec_Type is record

Emp_Name: Emp_Name_Type;
Hourly_Rate: Float;

end record;

Emp_Rec: Emp_Rec_Type;

42
References to Records

• Most language (including C and C++) use dot notation
Emp_Rec.Emp_Name.Mid

• Fully qualified references must include all record
names

• Elliptical references allow leaving out record names
as long as the reference is unambiguous
– For example, in COBOL
FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are elliptical
references to the employee’s first name

43
Operations on Records

• Assignment is very common if the types are
identical

• Ada allows record comparison

• Ada records can be initialized with aggregate
literals

• COBOL provides MOVE CORRESPONDING
– Copies a field of the source record to the corresponding

field in the target record

44
MOVE CORRESPONDING in COBOL

01 INPUT-REC.
02 EMP-NAME.

05 FIRST PIC X(20).
05 MID PIC X(10).
05 LAST PIC X(20).

02 EMP-NUMBER.
02 HOURS-WORKED PIC 99.

01 OUTPUT-REC.
02 EMP-NAME.

05 FIRST PIC X(20).
05 MID PIC X(10).
05 LAST PIC X(20).

02 EMP-NUMBER.
02 GROSS-PAY PIC 999V99
02 NET-PAY PIC 999V99.

MOVE CORRESPONDING INPUT-REC TO OUTPUT-REC.

45
Records Evaluation and Comparison to Arrays

• Records and arrays are closely related structural forms
– Arrays are used when all the data values have the same type and

are processed in the same way
– Records are used when collection of data values is

heterogeneous and different fields are not processed in the same
way

• Field names in Record are usually static
– So, it is efficient

• Access to array elements is also efficient in static arrays
– But, much slower than access to record fields

– When subscripts are dynamic

• Dynamic subscripts could be used with record field access,
but it would disallow type checking and it would be much
slower

46Implementation of Record Type:
Compile time descripton for a Record

Offset address relative to
the beginning of the records
is associated with each field

47
Unions Types

• A union is a type whose variables are allowed to store
different type values at different times during execution
– Store different data types in the same memory location
– Union can be defined with many members, only one member

can contain a value at any given time
– Efficient way of using the same memory location for multiple-

purpose

• Design issues
– Should type checking be required?

– Any such type checking must be dynamic

48
Discriminated vs. Free Unions

• Fortran, C, and C++ provide union constructs in
which there is no language support for type
checking
– The union in these languages is called free union

– Since programmers are allowed complete freedom from type
checking in their use

• Type checking of unions require that each union
include a type indicator called a tag or
discriminant
– Supported by ALGOL 68 and Ada

49
Why Union type? (Example codes in C++)

• Binary tree implementation
– Internal node

– Two pointer members to two children, no data member stored
– Leaf node

– Only contains data without pointers

struct NODE {
struct NODE* left;

struct NODE* right;

double data;
}

struct NODE {
bool is_leaf;

union {

struct {
struct NODE* left;

struct NODE* right;
} internal;
double data;

}info;

};

50
Free Unions can be Dangerous

union flexType {

int intEl;

float floatEl;

};

union flexType element;

float x;

. . .

element.intEl = 27;
x = element.floatEl;

51
Ada Union Types

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);

type Figure (Form: Shape) is
record
Filled: Boolean;

Color: Colors;

case Form is
when Circle => Diameter: Float;

when Triangle =>

Leftside, Rightside: Integer;
Angle: Float;

when Rectangle => Side1, Side2: Integer;

end case;
end record;

Figure_1 : Figure;

Figure_2 : Figure(Form => Triangle);

52
Ada Union Type Illustrated

A discriminated union of three shape variables

53
Evaluation of Unions

• Potentially unsafe construct
– Do not allow type checking

– One of the reasons why Fortran, C and C++ are not strongly
typed

• Java and C# do not support unions
– Reflective of growing concerns for safety in programming

language

• One exception
– Unions in Ada can be safely used by its design

54
Pointer and Reference Types

• A pointer type variable has a range of values that
consists of memory addresses and a special value,
nil

• Provide the power of indirect addressing

• Provide a way to manage dynamic memory

• A pointer can be used to access a location in the
area where storage is dynamically created (usually
called a heap)

55
Design Issues of Pointers

• What are the scope of and lifetime of a pointer
variable?

• What is the lifetime of a heap-dynamic variable?

• Are pointers restricted as to the type of value to
which they can point?

• Are pointers used for dynamic storage
management, indirect addressing, or both?

• Should the language support pointer types,
reference types, or both?

56

Arrays

• Data structure used to store a group of objects of the
same type sequentially in memory
– All the elements of an array must me same data type
– Since the elements of the array are stored in sequentially in

memory, it allows convenient and powerful manipulation of
array element using pointers

– Datatype arrayName[size];
– Ex: int id[30];
– char name[20];
– float height[10];

– Array indices in C++ are numbered starting at zero not one!
– id[0], id[1], … , id[29] for above example

– Arrays cannot be copied using the assignment operator
– int a[5], b[5];
– …
– a = b; // illegal!!!

57

Arrays (Continued)

• Arrays passed to functions can be modified
void foo(int arr[]) {

arr[0] = 42; // modifies array
return 0;

}

…
int my_array[5] = {1, 2, 3, 4, 5};
foo(my_array);
cout << “my_array[0] is “ << my_array[0];

58

Pointers

• Address
– A location in memory where data can be stored
– Ex: A variable or an array

• Pointer
– A variable which holds an address

59

Pointers (Continued)

Example:

int i = 10;

int *j = &i;

cout << ”i = ” << i << endl;

cout << ”j = ” << j << endl;

cout << ”j points to: ” << *j << endl;

60

Pointers (Continued)

• & is reference operator
– &i is the address of variable i

• * is dereference operator
– *j is the contents of the pointer variable j

– what j points to
– *j dereferences the pointer j
– * is used as multiplication and when declaring a pointer

variable also
– Ex: int i = 10;

int *j = &i;
int k = i * (*j);

61

Pointer arithmetic

• We can add/subtract integers to/from pointers
int i[5] = { 1, 2, 3, 4, 5 };

int *j = i; // (*j) == ?

j++; // (*j) == ?

j += 2; // (*j) == ?

j -= 3; // (*j) == ?

62

Arrays and pointers

• Arrays are pointers in disguise
int i[5] = { 1, 2, 3, 4, 5 };

cout << ”i[3] = ” << i[3] << endl;

cout << ”i[3] = ” << *(i + 3) << endl;

• i is same as &i[0] from above example

63

Arrays and pointers (Continued)

• Multi-dimensional array and pointer

int zippo[4][2]; // int array of 4 rows and 2 columns

int *pri; // pointer to integer

pri = zippo; // zippo == &zippo[0][0]

// pri == &zippo[0][0] row 1, column 1

// pri + 1 == &zippo[0][1] row 1, column 2

// pri + 1 == &zippo[1][0] row 2, column 1
// pri + 1 == &zippo[1][1] row 2, column 2

…

64

Arrays and pointers (Continued)

• Two versions of same operations

int array[1000];

for (i = 1; i < 999; i++) {
array[i] = (array[i-1] + array[i]);

}

for (i = 1; i < 999; i++) {
(array+i) = ((array+i-1) + *(array+i));

}

• But is it same in terms of performance?

65

Passing arguments into functions in C++

• The way variables or data maybe passed into a
function in C++
– Pass by value
– Pass a pointer by value
– Pass by reference

66

Pass by value

• The function receives a copy of the variable
– This local copy has scope (exists only within the function)
– Any changes to the variable made in the function does not

affect the variable in the calling function
– Good since it is simple and guarantees no change of the

variable in the calling function
– Bad in the following reasons

– Sometimes it is inefficient to copy a variable (when?)
– Only way to pass information from called function to calling

function is through return value (C/C++ has only 1 return value)

67

Pass by value (Continued)

Example:

void IncreaseMe(int theInt);
main()
{

int i;
i = 5;
IncreaseMe(i);

cout << "i is " << i << " \n";
}

void IncreaseMe(int i)
{

i = i + 1;
}

68

Passing a pointer by value

• A pointer to the variable is passed to the function
– The pointer can then be manipulated to change the value

of the variable in the calling function
– The function cannot change the pointer itself since it gets

the local copy the pointer
– But the called function can change the contents of the

memory location (variable) to which the pointer refers
– Good in the following reasons

– Any changes to variables will be passed back to the called
function

– Multiple variables can be changed

69

Passing a pointer by value (Continued)
Example:
void IncreaseMe2(int *theInt);

main()
{

int i;
int *pt;
i = 5;
pt = &i; // set the pointer to

// the address of i

IncreaseMe2(pt);
cout << "i is " << i << " \n";

}

void IncreaseMe2(int *i)
{

*i = *i + 1;
}

70

Pass by reference

• A reference in C++ is an alias to a variable
– Any changes made to the reference in the called function

will also be made to the original variable in the calling
function

– Good in the following sense
– It is avoiding complicated pointer notation
– Efficient since no local copy of the variables are made in the

called function
– Multiple variables can be changed

71

Pass by reference (Continued)

Example:

void IncreaseMe3(int &theInt);
main()
{

int i;
i = 5;
IncreaseMe(i);

cout << "i is " << i << " \n";
}

void IncreaseMe3(int &i)
{

i = i + 1;
}

72
Pointer Operations

• Two fundamental operations: assignment and
dereferencing

• Assignment is used to set a pointer variable’s value
to some useful address

• Dereferencing yields the value stored at the location
represented by the pointer’s value
– Dereferencing can be explicit or implicit
– C++ uses an explicit operation via *
j = *ptr

sets j to the value located at ptr

73
Pointer Assignment Illustrated

The assignment operation j = *ptr

74
Problems with Pointers

• Dangling pointers (dangerous)
– A pointer points to a heap-dynamic variable that has been de-

allocated

• Lost heap-dynamic variable
– An allocated heap-dynamic variable that is no longer accessible

to the user program (often called garbage)
– Pointer p1 is set to point to a newly created heap-dynamic variable
– Pointer p1 is later set to point to another newly created heap-dynamic

variable

75
Pointers in Ada

• Some dangling pointers are disallowed because
dynamic objects can be automatically de-allocated
at the end of pointer's type scope

• The lost heap-dynamic variable problem is not
eliminated by Ada

76
Pointers in C and C++

• Extremely flexible but must be used with care
• Pointers can point at any variable regardless of when it was

allocated
• Used for dynamic storage management and addressing
• Pointer arithmetic is possible
• Explicit dereferencing and address-of operators
• Domain type need not be fixed (void *)
• void * can point to any type and can be type checked

(cannot be de-referenced)

77
Pointer Arithmetic in C and C++

float stuff[100];

float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and p[i]

78
Pointers in Fortran 95

• Pointers point to heap and non-heap variables

• Implicit dereferencing

• Pointers can only point to variables that have the
TARGET attribute

• The TARGET attribute is assigned in the declaration:
INTEGER, TARGET :: NODE

79

Reference Types

• C++ includes a special kind of pointer type called a
reference type that is used primarily for formal
parameters
– Advantages of both pass-by-reference and pass-by-value

• Java extends C++’s reference variables and allows
them to replace pointers entirely
– References refer to call instances

• C# includes both the references of Java and the
pointers of C++

80
Evaluation of Pointers

• Dangling pointers and dangling objects are
problems as is heap management

• Pointers are like goto's--they widen the range of
cells that can be accessed by a variable

• Pointers or references are necessary for dynamic
data structures--so we can't design a language
without them

81
Representations of Pointers

• Large computers use single values

• Intel microprocessors use segment and offset

82
Dangling Pointer Problem

• Tombstone: extra heap cell that is a pointer to the
heap-dynamic variable
– The actual pointer variable points only at tombstones
– When heap-dynamic variable de-allocated, tombstone

remains but set to nil
– Costly in time and space

• Locks-and-keys: Pointer values are represented as
(key, address) pairs
– Heap-dynamic variables are represented as variable plus

cell for integer lock value
– When heap-dynamic variable allocated, lock value is

created and placed in lock cell and key cell of pointer

83
Heap Management

• A very complex run-time process

• Single-size cells vs. variable-size cells

• Two approaches to reclaim garbage
– Reference counters (eager approach): reclamation is

gradual
– Garbage collection (lazy approach): reclamation occurs

when the list of variable space becomes empty

84
Reference Counter

• Reference counters: maintain a counter in every cell
that store the number of pointers currently pointing at
the cell
– Disadvantages: space required, execution time required,

complications for cells connected circularly

85
Garbage Collection

• The run-time system allocates storage cells as requested and
disconnects pointers from cells as necessary; garbage
collection then begins
– Every heap cell has an extra bit used by collection algorithm
– All cells initially set to garbage
– All pointers traced into heap, and reachable cells marked as not

garbage
– All garbage cells returned to list of available cells
– Disadvantages: when you need it most, it works worst (takes most

time when program needs most of cells in heap)

86
Marking Algorithm

87
Variable-Size Cells

• All the difficulties of single-size cells plus more

• Required by most programming languages

• If garbage collection is used, additional problems
occur
– The initial setting of the indicators of all cells in the heap is

difficult
– The marking process in nontrivial
– Maintaining the list of available space is another source of

overhead

88
Summary

• The data types of a language are a large part of what
determines that language’s style and usefulness

• The primitive data types of most imperative languages include
numeric, character, and Boolean types

• The user-defined enumeration and subrange types are
convenient and add to the readability and reliability of
programs

• Arrays and records are included in most languages

• Pointers are used for addressing flexibility and to control
dynamic storage management

89
Homework #3 (part 2)

• Programming Exercise (P.318 of class textbook)
– Question 7

• Problem Solving (P. 316 of class textbook)
– 2,15

• Due date: One week from assigned date
– Please hand in printed (typed) form

– I do not accept any handwritten assignment
– Exception: pictures

