COLLEGE

CRIMINAL
JUSTICE

Programming Languages:
Lecture 6

Chapter 6: Data Types

Jinwoo Kim
jwkim@)jjay.cuny.edu

Chapter 6 Topics

e |ntroduction

e Primitive Data Types

e Character String Types

e User-Defined Ordinal Types
e Array Types

e Associative Arrays

e Record Types

e Union Types

e Pointer and Reference Types

Introduction

A data type defines a collection of data objects and
a set of predefined operations on those objects

A descriptor is the collection of the attributes of a
variable

An object represents an instance of a user-defined
(abstract data) type

One design issue for all data types: What

operations are defined and how are they
specified?

CDLLEGE

BRIMINAI.
JUSTICE

Primitive Data Types

e Almost all programming languages provide a set of

primitive data types

— Primitive data types: Those not defined in terms of other
data types

Some primitive data types are merely reflections of
the hardware

Others require little non-hardware support

Primitive Data Types: Integer

CDLLEGE

CRIMINAI.
JUSTICE

e Most common primitive numeric data type
— Many computers support several sizes of integers

— Almost always an exact reflection of the hardware so the
mapping is trivial

e Java's signed integer sizes: byte, short, int,
long

e (C++ and C# include unsigned integer types

CDLLEGE

CRIMINAL
JUSTICE

Primitive Data Types: Floating Point

Model real numbers, but only as approximations
Languages for scientific use support at least two

floating-point types

— e.g., float and double;

— sometimes more

Most newer machines use |IEEE Floating-Point

Standard 754 format

— Single and Double precision

11 bits

8 bits

23 bits

Exponent

Fraction

‘LSign bit

(a)

52 bits

Exponent

Fraction

ALSign bit

(b

CDLLEGE

BRIMINAI.
JUSTICE

Primitive Data Types: Decimal

Store a fixed number of decimal digits
— With decimal point at a fixed position in the value

For business applications (money)

— Essential to COBOL
— C# offers a decimal data type

Store a fixed number of decimal digits

Advantage: accuracy

Disadvantages: limited range, wastes memory

Primitive Data Types: Boolean

e Simplest of all types

e Range of values: two elements, one for “true” and
one for “false”

e Could be implemented as bits, but often as bytes
— Advantage: readability

Primitive Data Types: Character

CDLLEGE

CRIMINAL
JUSTICE

e Stored as numeric codings
e Most commonly used coding: ASCII

e An alternative, 16-bit coding: Unicode
— Includes characters from most natural languages
— Originally used in Java
— C# and JavaScript also support Unicode

Character String Types

CDLLEGE

CRIMINAL
JUSTICE

e Values are sequences of characters

e Design issues:
— Is it a primitive type or just a special kind of array?
— Should the length of strings be static or dynamic?

10

CDLLEGE

CRIMINAL
JUSTICE

Character String Types Operations

e Typical operations:
— Assignment and copying

Comparison (=, >, etc.)
Catenation

Substring reference
Pattern matching

11

CDLLEGE

CRIMINAL
JUSTICE

Character String Type in Certain Languages

C and C++
— Not primitive
— Use char arrays and a library of functions (string.h)
that provide operations

— C++ provides string class

SNOBOL4 (a string manipulation language)
— Primitive
— Many operations, including elaborate pattern matching

Java
— Primitive via the String class

12

CDLLEGE

CRIMINAI.
JUSTICE

Character String Length Options

Static: COBOL, Java's string class

Limited Dynamic Length: C and C++

— In C-based language, a special character is used to
indicate the end of a string’s characters, rather than
maintaining the length

Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

Ada supports all three string length options

13

Character String Type Evaluation

CDLLEGE

CRIMINAL
JUSTICE

e Aid to writability

— Dealing with strings as arrays can be more cumbersome
than dealing with a primitive string type

e As a primitive type with static length, they are
inexpensive to provide--why not have them?

— Addition of strings as a primitive type to a language is not
costly in terms of language and compiler complexity

e Dynamic length is nice, but is it worth the expense?
— Advantage: flexibility
— Disadvantage: overhead from its implementation
— Often included only in languages that are interpreted

14

Character String Implementation

e Static length: compile-time descriptor

e Limited dynamic length: may need a run-time
descriptor for length (but not in C and C++)

e Dynamic length: need run-time descriptor

— Allocation/deallocation is the biggest implementation
problem

15

COLLEGE

JUSTICE

Static string

Length

Address

Compile-time
descriptor for
static strings

16

Compile- and Run-Time Descriptors

Limited dynamic string

Maximum length

Current length

Address

Run-time
descriptor for
limited dynamic
strings

17

User-Defined Ordinal Types

e An ordinal type is one in which the range of

possible values can be easily associated with the
set of positive integers

e Examples of primitive ordinal types in Java
— integer
— char

— Boolean

e In some languages, users can define two kinds of
ordinal types

— Enumeration
— Subrange

Enumeration Types

CDLLEGE

CRIMINAL
JUSTICE

e All possible values, which are named constants, are
provided in the definition

o C# example

enum days {mon, tue, wed, thu, fri, sat, sun};

e Design issues

— Is an enumeration constant allowed to appear in more than
one type definition, and if so, how is the type of an
occurrence of that constant checked?

— Are enumeration values coerced to integer?
— Any other type coerced to an enumeration type?

18

Evaluation of Enumerated Type

COLLEGE

CRIMINAL
JUSTICE

e Aid to readability

— e.g., ho need to code a color as a number

e Aid to reliability

— e.g., compiler can check:
— operations (don’t allow colors to be added)

— No enumeration variable can be assigned a value outside its
defined range

— Ada, C#, and Java 5.0 provide better support for enumeration
than C++ because enumeration type variables in these
languages are not coerced into integer types

19

Subrange Types

CDLLEGE

CRIMINAL
JUSTICE

e An ordered contiguous subsequence of an ordinal
type

— Example: 12..18 is a subrange of integer type

e Ada’s design

type Days 1s (mon, tue, wed, thu, fri, sat, sun);

subtype Weekdays 1s Days range mon..fri;

subtype Index i1s Integer range 1..100;

Dayl: Days;
Day2: Weekday;
Day2 := Dayl;

20

Subrange Evaluation

CDLLEGE

CRIMINAL
JUSTICE

e Aid to readability

— Make it clear to the readers that variables of subrange can
store only certain range of values

o Reliability

— Assigning a value to a subrange variable that is outside the
specified range is detected as an error

21

Enumeration types are implemented as integers

Subrange types are implemented like the parent
types with code inserted (by the compiler) to restrict
assignments to subrange variables

22

Array Types

e An array is an aggregate of homogeneous data
elements in which an individual element is identified

by its position in the aggregate, relative to the first
element.

23

Array Design Issues

What types are legal for subscripts?

Are subscripting expressions in element
references range checked?

When are subscript ranges bound?

When does allocation take place?

What is the maximum number of subscripts?
Can array objects be initialized?

Are any kind of slices allowed?

24

Array Indexing

COLLEGE

CRIMINAL
JUSTICE

e [ndexing (or subscripting) is a mapping from indices
to elements

array name (index value list) — an element

e Index Syntax
— FORTRAN, PL/I, Ada use parentheses

— Ada explicitly uses parentheses to show uniformity between
array references and function calls because both are mappings

— Most other languages use brackets

26

Arrays Index (Subscript) Types

FORTRAN, C: integer only

Pascal: any ordinal type (integer, Boolean, chair,
enumeration)

Ada: integer or enumeration (includes Boolean and
char)

Java: integer types only

C, C++, Perl, and Fortran do not specify range
checking

Java, ML, C# specify range checking

CDLLEGE

BRIMINAI.
JUSTICE

Subscript Binding and Array Categories

Static: subscript ranges are statically bound and
storage allocation is static (before run-time)

— Advantage: efficiency (no dynamic allocation)

Fixed stack-dynamic. subscript ranges are statically
bound, but the allocation is done at declaration time

— Advantage: space efficiency

27

28
Subscript Binding and Array Categories (continued)

CRIMINAL
JUSTICE

o Stack-dynamic: subscript ranges are dynamically
bound, and the storage allocation is dynamic (done
at run-time)

— Advantage: flexibility

— Size of an array need not be known until the array is to be used

e Fixed heap-dynamic: similar to fixed stack-dynamic:
storage binding is dynamic but fixed after allocation

— i.e., binding is done when requested and storage is
allocated from heap, not stack

CDLLEGE

CRIMINAI.
JUSTICE

29
Subscript Binding and Array Categories (continued)

Heap-dynamic: binding of subscript ranges and
storage allocation is dynamic and can change any
number of times

— Advantage: flexibility (arrays can grow or shrink during
program execution)

30
Subscript Binding and Array Categories (continued)

C and C++ arrays that include static modifier are static

C and C++ arrays without static modifier are fixed
stack-dynamic

Ada arrays can be stack-dynamic
C and C++ provide fixed heap-dynamic arrays

C# includes a second array class ArrayList that
provides fixed heap-dynamic

Perl and JavaScript support heap-dynamic arrays

31
Static in C or C++

COLLEGE

CRIMINAL
JUSTICE

e The static keyword has several distinct meanings

— Life time of variable declared locally to function is only
during function calls

— What should | do if | want to retain values between function
calls?

— Why not use global variables then?

// Using a static variable in a function

void func () {

static int 1 = 0;

cout << "1 = " <K< ++]1 << endl;
}
int main() {

for(int x = 0; x < 10; x++)

func () ;

Static in C or C++ (Continued)

COLLEGE

CRIMINAL
JUSTICE

e \When static is applied to a function name or to a
variable that is outside of all functions, it means
“This name is unavailable outside of this file.”

— The function name or variable is local to the file

// File scope means only available in this file:
static int fs;
int main () {
fs = 1;
}

// Trying to reference fs in another file
extern int fs;
void func () |

fs = 100;

32

Array Initialization

33

Some language allow initialization at the time of

storage allocation
— C, C++, Java, C# example

int list [] = {4, 5, 7, 83}
— Character strings in C and C++
char name [] = “freddie”

— Arrays of strings in C and C++

char *names [] = {“Bob”, %“Jake”,

— Java initialization of String objects

String[] names = {“Bob”, “Jake”,

\\Joe//:l ;

\\Joe//} ;

Arrays Operations

CDLLEGE

BRIMINAI.
JUSTICE

e APL provides the most powerful array processing

operations for vectors and matrixes as well as unary
operators

— For example, to reverse column elements

e Ada allows array assignment but also catenation

e Fortran provides elemental operations because they are
between pairs of array elements

— For example, + operator between two arrays results in an array
of the sums of the element pairs of the two arrays

34

COLLEGE

CRIMINAL
JUSTICE

Array

Element type

Index type

Index lower bound

Index upper bound

Address

Single-dimensioned array

Compile-Time Descriptors

Multidimensioned array

Element type

Index type

Number of dimensions

Index range 1

Index range n

Address

Multi-dimensional array

35

CDLLEGE

CRIMINAL
JUSTICE

Associative Arrays

An associative array is an unordered collection of
data elements that are indexed by an equal
number of values called keys

— User defined keys must be stored

Design issues: What is the form of references to
elements

36

CDLLEGE

CRIMINAL
JUSTICE

Associative Arrays in Perl

Names begin with %

shi temps = ("Mon" => 77, "Tue" => 79,
=> 65, ..);

Subscripting is done using braces and keys
Shi temps{"Wed"} = 83;

Elements can be removed with delete
delete Shi temps{"Tue"};

\\Wed//

37

e A recordis a possibly heterogeneous aggregate of data

elements in which the individual elements are identified
by names

Record Types

CDLLEGE

BRIMINAI.
JUSTICE

e Design issues:

— What is the syntactic form of references to the field?
— Are elliptical references allowed?

38

CDLLEGE

CRIMINAL
JUSTICE

Definition of Records in Cobol

COBOL uses level numbers to show nested records
— Level numbers in COBOL shows hierarchical structure
— Other languages usually use recursive definition

01 EMP-REC.
02 EMP-NAME.
05 FIRST PIC X (20).
05 MID PIC X (10).
05 LAST PIC X (20).
02 HOURLY-RATE PIC 99V99.

39

COLLEGE
OF
CRIMINAL
JUSTICE

Definition of Records in COBOL (Continued)

Record Field References

— field_name OF record name_ 1 OF ... OF record name_n
—record_name_1 : innermost record that contains the field_name
—record_name_n : outermost record that contains the field _name

— Example
— MID OF EMP-NAME OF EMP-REC

40

CDLLEGE

CRIMINAL
JUSTICE

e Record structures are indicated in an orthogonal way

type Emp Name Type is record
First: String (1..20);
Mid: String (1..10);
Last: String (1..20);

end record;

type Emp Rec Type is record
Emp Name: Emp Name Type;
Hourly Rate: Float;

end record;

Emp Rec: Emp Rec Type;

Definition of Records in Ada

41

References to Records

COLLEGE

CRIMINAL
JUSTICE

e Most language (including C and C++) use dot notation
Emp Rec.Emp Name.Mid

e Fully qualified references must include all record
names

o Elliptical references allow leaving out record names
as long as the reference is unambiguous

— For example, in COBOL

FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are elliptical
references to the employee’s first name

42

CDLLEGE

BRIMINAI.
JUSTICE

43
Operations on Records

e Assignment is very common if the types are

Identical

e Ada allows record comparison

e Ada records can be Initialized with aggregate

literals

COBOL provides MOVE CORRESPONDING

— Copies a field of the source record to the corresponding
field in the target record

CDLLEGE

CRIMINAL
JUSTICE

01 INPUT-REC.
02 EMP-NAME.
05 FIRST PIC X(20).
05MID PIC X(10).
05 LAST PIC X(20).
02 EMP-NUMBER.

MOVE CORRESPONDING in COBOL

02 HOURS-WORKED PIC 99.

01 OUTPUT-REC.

02 EMP-NAME.
05 FIRST PIC X(20).
05MID PIC X(10).
05 LAST PIC X(20).

02 EMP-NUMBER.

02 GROSS-PAY PIC 999V99

02 NET-PAY PIC 999V99.

MOVE CORRESPONDING INPUT-REC TO OUTPUT-REC.

44

“ Records Evaluation and Comparison to Arrays

OF
CRIMINAL
JUSTICE

e Records and arrays are closely related structural forms

— Arrays are used when all the data values have the same type and
are processed in the same way

— Records are used when collection of data values is

heterogeneous and different fields are not processed in the same
way

e Field names in Record are usually static
— So, it is efficient

e Access to array elements is also efficient in static arrays

— But, much slower than access to record fields
— When subscripts are dynamic

e Dynamic subscripts could be used with record field access,

but it would disallow type checking and it would be much
slower

45

Implementation of Record Type:

;;;;j;; Compile time descripton for a Record

Record

Name

Offset address relative to Field 1~ Type

the beginning of the records Offset
is associated with each field -

Name

Field n < Type

Offset

Address

Unions Types

CDLLEGE

CRIMINAI.
JUSTICE

e A union is a type whose variables are allowed to store
different type values at different times during execution

— Store different data types in the same memory location

— Union can be defined with many members, only one member
can contain a value at any given time

— Efficient way of using the same memory location for multiple-
purpose

e Design issues
— Should type checking be required?

— Any such type checking must be dynamic

47

CBLLEGE

CRIMINAL
JUSTICE

48
Discriminated vs. Free Unions

Fortran, C, and C++ provide union constructs in
which there is no language support for type
checking

— The union in these languages is called free union

— Since programmers are allowed complete freedom from type
checking in their use

Type checking of unions require that each union
iInclude a type indicator called a tag or
discriminant

— Supported by ALGOL 68 and Ada

COLLEGE
OF
CRIMINAL
JUSTICE

“ Why Union type? (Example codes in C++)

e Binary tree implementation

— Internal node

— Two pointer members to two children, no data member stored

— Leaf node

— Only contains data without pointers

struct NODE {
struct NODE* left;
struct NODE* right;
double data;

struct NODE {
bool is leaf;
union {
struct {
struct NODE* left;

struct NODE* right;

} internal;
double data;

}info;

49

COLLEGE
OF
CRIMINAL
JUSTICE

Free Unions can be Dangerous

union flexType
int intE1l;
float floatEl;
Y

union flexType element;

float x;

element.intEl = 27;

x = element.floatEl;

50

Ada Union Types

COLLEGE
OF
CRIMINAL
JUSTICE

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) 1is
record
Filled: Boolean;
Color: Colors;
case Form is
when Circle => Diameter: Float;
when Triangle =>
Leftside, Rightside: Integer;
Angle: Float;
when Rectangle => Sidel, SideZ: Integer;
end case;

end record;

Figure 1 : Figure;

Figure 2 : Figure(Form => Triangle);

51

Ada Union Type lllustrated

CDLLEGE

CRIMINAL
JUSTICE

rectangle: sidel, side?2

A
- A

circle:diameter

N
4 R

<7
triangle: leftside, rightside, angle
chnnnnant(form)
color

filled

A discriminated union of three shape variables

52

Evaluation of Unions

CDLLEGE

BRIMINAI.
JUSTICE

e Potentially unsafe construct

— Do not allow type checking

— One of the reasons why Fortran, C and C++ are not strongly
typed

e Java and C# do not support unions

— Reflective of growing concerns for safety in programming
language

e One exception
— Unions in Ada can be safely used by its design

53

54
Pointer and Reference Types

e A pointer type variable has a range of values that
consists of memory addresses and a special value,
nil

e Provide the power of indirect addressing
e Provide a way to manage dynamic memory

e A pointer can be used to access a location in the
area where storage is dynamically created (usually
called a heap)

55
Design Issues of Pointers

What are the scope of and lifetime of a pointer
variable?

What is the lifetime of a heap-dynamic variable?

Are pointers restricted as to the type of value to
which they can point?

Are pointers used for dynamic storage
management, indirect addressing, or both?

Should the language support pointer types,
reference types, or both?

CDLLEGE

BRIMINAI.
JUSTICE

Arrays

Data structure used to store a group of objects of the
same type sequentially in memory

— All the elements of an array must me same data type

— Since the elements of the array are stored in sequentially in
memory, it allows convenient and powerful manipulation of
array element using pointers

— Datatype arrayName[size];

— Ex: int id[30];
— char name[20];
— float height[10];

— Array indices in C++ are numbered starting at zero not one!
—id[0], id[1], ... , id[29] for above example

— Arrays cannot be copied using the assignment operator
— int a[5], b[5];

—a=b; /lillegal!!!

56

Arrays (Continued)

COLLEGE

CRIMINAL
JUSTICE

e Arrays passed to functions can be modified
void foo(int arr(]) {

arr[0] = 42; /| modifies array

return 0;

int my_array[5] = {1, 2, 3, 4, 5};
foo(my_array);

cout << “my_array|[0] is “ << my_array[0];

57

CDLLEGE

CRIMINAL
JUSTICE

Pointers

Address

— A location in memory where data can be stored
— Ex: A variable or an array

Pointer
— A variable which holds an address

58

Pointers (Continued)

COLLEGE

CRIMINAL
JUSTICE

Example:
int i = 10;
int *j = &i;

cout << ”“1i

" << 1 << endl;
cout < ”"J = " <K< j << endl;

cout << ”J points to: " << *j << endl;

CDLLEGE

CRIMINAI.
JUSTICE

Pointers (Continued)

& is reference operator
— &i is the address of variable i

* is dereference operator

— *j is the contents of the pointer variable |
— what j points to

— *j dereferences the pointer |

— *is used as multiplication and when declaring a pointer
variable also
— Ex:inti=10;
int *j = &i;
intk =i*(%);

60

Pointer arithmetic

OF
CRIMINAL
JUSTICE

e We can add/subtract integers to/from pointers
int i[5] = { 1, 2, 3, 4, 5 };

int *j =1i; // (*j) =7
J++; /]l (*]) == 2
j += 2; // (*j) == 2

j -= 3; [/ (*3) =7

Arrays and pointers

COLLEGE

CRIMINAL
JUSTICE

e Arrays are pointers in disguise
int i[5]1 = { 1, 2, 3, 4, 5 };
cout << ”71i[3] = ” << 1[3] << endl;

cout << ”71[3] =" <KL *(1 + 3) << endl;

e iis same as &i[0] from above example

62

COLLEGE

CRIMINAL
JUSTICE

Arrays and pointers (Continued)

Multi-dimensional array and pointer

int zippo[4][2]; // int array of 4 rows and 2 columns
int *pri; // pointer to integer

pri = zippo; // zippo == &zippo[0][0]

// pri == &zippo[0][0] row 1, column 1

// pri + 1 == &zippo[0][1] row 1, column 2

// pri + 1 == &zippo[1l][0] row 2, column 1

// pri + 1 == &zippo[1l][1] row 2, column 2

63

COLLEGE

JUSTICE

Arrays and pointers (Continued)

CRIMINAL

Two versions of same operations

int array[1000];

for (i = 1; i < 999; i++) {

array[i] = (array[i-1l] + array[i]):

for (i = 1; i < 999; i++) {

* (array+i) = (*(array+i-1) + * (array+i));

But is it same in terms of performance?

64

Passing arguments into functions in C++

CDLLEGE

CRIMINAL
JUSTICE

e The way variables or data maybe passed into a
function in C++

— Pass by value
— Pass a pointer by value
— Pass by reference

65

CDLI.EGE

CRIMINAL
JUSTICE

Pass by value

e The function receives a copy of the variable

This local copy has scope (exists only within the function)

Any changes to the variable made in the function does not
affect the variable in the calling function

Good since it is simple and guarantees no change of the
variable in the calling function
Bad in the following reasons

— Sometimes it is inefficient to copy a variable (when?)

— Only way to pass information from called function to calling
function is through return value (C/C++ has only 1 return value)

66

COLLEGE

CRIMINAL
JUSTICE

Pass by value (Continued)

Example:

void IncreaseMe (int thelnt) ;
main ()
{

int 1i;

i=25;

IncreaseMe (i) ;

cout << "i is " << i << " \n";

void IncreaseMe (int 1i)

{
}

i=1i+1;

67

CDLLEGE

CRIMINAI.
JUSTICE

Passing a pointer by value

e A pointer to the variable is passed to the function

The pointer can then be manipulated to change the value
of the variable in the calling function

The function cannot change the pointer itself since it gets
the local copy the pointer

But the called function can change the contents of the
memory location (variable) to which the pointer refers

Good in the following reasons

— Any changes to variables will be passed back to the called
function

— Multiple variables can be changed

68

69

COLLEGE

CRIMINAL
JUSTICE

Passing a pointer by value (Continued)

Example:

void IncreaseMe2 (int *thelnt);

main ()

{
int i;
int *pt;
i=25;
pt = &i; // set the pointer to
// the address of i

IncreaseMe2 (pt) ;
cout << "i is " << i << " \n";

void IncreaseMe2 (int *i)

*i = *i + 1;

CBLLEGE

CRIMINAL
JUSTICE

Pass by reference

A reference in C++ is an alias to a variable

— Any changes made to the reference in the called function
will also be made to the original variable in the calling
function

— Good in the following sense
— It is avoiding complicated pointer notation

— Efficient since no local copy of the variables are made in the
called function

— Multiple variables can be changed

70

Pass by reference (Continued)

COLLEGE

CRIMINAL
JUSTICE

Example:

void IncreaseMe3 (int &thelnt) ;

main ()

{
int 1i;
i=25;

IncreaseMe (i) ;

cout << "i is " << i << " \n";

void IncreaseMe3 (int &i)

{
}

i=1i+1;

Pointer Operations

CDLLEGE

BRIMINAI.
JUSTICE

e Two fundamental operations: assignment and
dereferencing

e Assignment is used to set a pointer variable’s value
to some useful address

o Dereferencing yields the value stored at the location
represented by the pointer’s value

— Dereferencing can be explicit or implicit
— C++ uses an explicit operation via *

J = *ptr

sets j to the value located at ptr

72

CDLLEGE

BRIMINAI.
JUSTICE

7080

ptr l 7080

The assignment operation j = *ptr

73

Pointer Assignment lllustrated

An anonymous
dynamic variable

Problems with Pointers

CDLI.EGE

CRIMINAL
JUSTICE

Dangling pointers (dangerous)

— A pointer points to a heap-dynamic variable that has been de-
allocated

Lost heap-dynamic variable

— An allocated heap-dynamic variable that is no longer accessible
to the user program (often called garbage)
— Pointer pl is set to point to a newly created heap-dynamic variable

— Pointer pl is later set to point to another newly created heap-dynamic
variable

74

Pointers in Ada

e Some dangling pointers are disallowed because
dynamic objects can be automatically de-allocated
at the end of pointer's type scope

e The lost heap-dynamic variable problem is not
eliminated by Ada

75

Pointers in C and C++

CDLI.EGE

CRIMINAL
JUSTICE

o Extremely flexible but must be used with care

e Pointers can point at any variable regardless of when it was
allocated

e Used for dynamic storage management and addressing
e Pointer arithmetic is possible

o Explicit dereferencing and address-of operators

e Domain type need not be fixed (void *)

e void * can pointto any type and can be type checked
(cannot be de-referenced)

76

Pointer Arithmetic in C and C++

CDLLEGE

BRIMINAI.
JUSTICE

float stuff[100];
float *p;
p = stuff;

* (p+5) Is equivalentto stuff[5] and p[5]
* (p+1) Isequivalentto stuff[i] and p[i]

77

78
Pointers in Fortran 95

e Pointers point to heap and non-heap variables

e Implicit dereferencing

e Pointers can only point to variables that have the
TARGET attribute

e The TARGET attribute is assigned in the declaration:
INTEGER, TARGET :: NODE

CDLLEGE

CRIMINAL
JUSTICE

Reference Types

C++ includes a special kind of pointer type called a
reference type that is used primarily for formal
parameters

— Advantages of both pass-by-reference and pass-by-value

Java extends C++’s reference variables and allows
them to replace pointers entirely

— References refer to call instances

C# includes both the references of Java and the
pointers of C++

79

80
Evaluation of Pointers

Dangling pointers and dangling objects are
problems as is heap management

Pointers are like goto's--they widen the range of
cells that can be accessed by a variable

Pointers or references are necessary for dynamic
data structures--so we can't design a language
without them

Representations of Pointers

CDLLEGE

BRIMINAI.
JUSTICE

Large computers use single values

Intel microprocessors use segment and offset

81

CDLLEGE

CRIMINAL
JUSTICE

Dangling Pointer Problem

Tombstone: extra heap cell that is a pointer to the
heap-dynamic variable

— The actual pointer variable points only at tombstones

— When heap-dynamic variable de-allocated, tombstone
remains but set to nil

— Costly in time and space

Locks-and-keys: Pointer values are represented as
(key, address) pairs

— Heap-dynamic variables are represented as variable plus
cell for integer lock value

— When heap-dynamic variable allocated, lock value is
created and placed in lock cell and key cell of pointer

82

Heap Management

CDLI.EGE

CRIMINAL
JUSTICE

e A very complex run-time process

e Single-size cells vs. variable-size cells

e Two approaches to reclaim garbage

— Reference counters (eager approach): reclamation is
gradual

— Garbage collection (/lazy approach): reclamation occurs
when the list of variable space becomes empty

83

84

Reference Counter

CDLLEGE

BRIMINAI.
JUSTICE

e Reference counters: maintain a counter in every cell
that store the number of pointers currently pointing at
the cell

— Disadvantages: space required, execution time required,
complications for cells connected circularly

CDLLEGE

CRIMINAL
JUSTICE

Garbage Collection

e The run-time system allocates storage cells as requested and
disconnects pointers from cells as necessary; garbage
collection then begins

Every heap cell has an extra bit used by collection algorithm

All cells initially set to garbage

All pointers traced into heap, and reachable cells marked as not
garbage

All garbage cells returned to list of available cells

Disadvantages: when you need it most, it works worst (takes most
time when program needs most of cells in heap)

85

Marking Algorithm

COLLEGE
OF
CRIMINAL
JUSTICE

Dashed lines show the order of node_marking

Variable-Size Cells

CDLLEGE

CRIMINAI.
JUSTICE

o All the difficulties of single-size cells plus more
e Required by most programming languages

o If garbage collection is used, additional problems
occur

— The initial setting of the indicators of all cells in the heap is
difficult

— The marking process in nontrivial

— Maintaining the list of available space is another source of
overhead

Summary

CBLLEGE

CRIMINAL
JUSTICE

e The data types of a language are a large part of what
determines that language’s style and usefulness

e The primitive data types of most imperative languages include
numeric, character, and Boolean types

e The user-defined enumeration and subrange types are
convenient and add to the readability and reliability of
programs

e Arrays and records are included in most languages

e Pointers are used for addressing flexibility and to control
dynamic storage management

Homework #3 (part 2)

CﬂlLEGE

CRIMINAL
JUSTICE

Programming Exercise (P.318 of class textbook)
— Question 7

Problem Solving (P. 316 of class textbook)
- 2,15

Due date: One week from assigned date
— Please hand in printed (typed) form

— | do not accept any handwritten assignment
— Exception: pictures

89

