

1

Programming Languages:

Lecture 5

Chapter 5: Names, Bindings, Type Checking,

and Scopes

Jinwoo Kim
jwkim@jjay.cuny.edu

2

Chapter 5 Topics

 Introduction

 Names

 Variables

 The Concept of Binding

 Type Checking

 Strong Typing

 Type Compatibility

 Scope and Lifetime

 Referencing Environments

 Named Constants

3

Introduction

 Imperative languages are abstractions of von
Neumann architecture

– Memory

– Processor

 Variables characterized by attributes

– Type: to design, must consider scope, lifetime, type
checking, initialization, and type compatibility

4

Names

 Design issues for names:

– Maximum length?

– Are connector characters allowed?

– Are names case sensitive?

– Are special words reserved words or keywords?

5

Names (continued)

 Length

– If too short, they cannot be connotative

– Language examples:

– FORTRAN I: maximum 6

– COBOL: maximum 30

– FORTRAN 90 and ANSI C: maximum 31

– Ada and Java: no limit, and all are significant

– C++: no limit, but implementers often impose one

6

Names (continued)

 Connectors

– Pascal, Modula-2, and FORTRAN 77 don't allow

– Others do

7

Names (continued)

 Case sensitivity

– Disadvantage: readability (names that look alike are
different)

– worse in C++ and Java because predefined names are mixed
case (e.g. IndexOutOfBoundsException)

– C, C++, and Java names are case sensitive

– The names in other languages are not

8

Names (continued)

 Special words

– An aid to readability; used to delimit or separate statement
clauses

– A keyword is a word that is special only in certain contexts, e.g.,
in Fortran

– Real VarName (Real is a data type followed with a name, therefore Real is a
keyword)

– Real = 3.4 (Real is a variable)

– A reserved word is a special word that cannot be used as
a user-defined name

9

Variables

 A variable is an abstraction of a memory cell

 Variables can be characterized as a six-tuple of
attributes:

– Name

– Address

– Value

– Type

– Lifetime

– Scope

10

Variables Attributes

 Name - not all variables have them

 Address - the memory address with which it is associated

– A variable may have different addresses at different times during
execution

– A variable may have different addresses at different places in a
program

– If two variable names can be used to access the same memory
location, they are called aliases

– Aliases are created via pointers, reference variables, C and C++
unions

– Aliases are harmful to readability (program readers must
remember all of them)

11

Variables Attributes (continued)

 Type - determines the range of values of variables
and the set of operations that are defined for values
of that type; in the case of floating point, type also
determines the precision

 Value - the contents of the location with which the
variable is associated

 Abstract memory cell - the physical cell or collection
of cells associated with a variable

12

The Concept of Binding

 The l-value of a variable is its address

 The r-value of a variable is its value

 A binding is an association, such as between an
attribute and an entity, or between an operation and
a symbol

 Binding time is the time at which a binding takes
place.

13

Possible Binding Times

 Language design time -- bind operator symbols to operations

 Language implementation time-- bind floating point type to a
representation

 Compile time -- bind a variable to a type in C or Java

 Load time -- bind a FORTRAN 77 variable to a memory cell (or
a C static variable)

 Runtime -- bind a nonstatic local variable to a memory cell

14

Static and Dynamic Binding

 A binding is static if it first occurs before run time
and remains unchanged throughout program
execution

 A binding is dynamic if it first occurs during
execution or can change during execution of the
program

15

Type Binding

 How is a type specified?

 When does the binding take place?

 If static, the type may be specified by either an
explicit or an implicit declaration

16

Explicit/Implicit Declaration

 An explicit declaration is a program statement used
for declaring the types of variables

 An implicit declaration is a default mechanism for
specifying types of variables (the first appearance of
the variable in the program)

 FORTRAN, PL/I, BASIC, and Perl provide implicit
declarations

– Advantage: writability

– Disadvantage: reliability (less trouble with Perl)

17

Dynamic Type Binding

 Dynamic Type Binding (JavaScript and PHP)

 Specified through an assignment statement
e.g., JavaScript

 list = [2, 4.33, 6, 8];

 list = 17.3;

– Advantage: flexibility (generic program units)

– Disadvantages:

– High cost (dynamic type checking and interpretation)

– Type error detection by the compiler is difficult

18

Variable Attributes (continued)

 Type Inferencing (ML, Miranda, and Haskell)

– Rather than by assignment statement, types are
determined from the context of the reference

 Storage Bindings & Lifetime

– Allocation - getting a cell from some pool of available cells

– Deallocation - putting a cell back into the pool

 The lifetime of a variable is the time during which it
is bound to a particular memory cell

19

Categories of Variables by Lifetimes

 Static--bound to memory cells before execution
begins and remains bound to the same memory cell
throughout execution, e.g., all FORTRAN 77
variables, C static variables

– Advantages: efficiency (direct addressing), history-
sensitive subprogram support

– Disadvantage: lack of flexibility (no recursion)

20

Categories of Variables by Lifetimes

 Stack-dynamic--Storage bindings are created for variables when
their declaration statements are elaborated

 If scalar, all attributes except address are statically bound

– local variables in C subprograms and Java methods

 Advantage: allows recursion; conserves storage

 Disadvantages:

– Overhead of allocation and deallocation

– Subprograms cannot be history sensitive

– Inefficient references (indirect addressing)

21

Categories of Variables by Lifetimes

 Explicit heap-dynamic -- Allocated and deallocated by explicit
directives, specified by the programmer, which take effect during
execution

 Referenced only through pointers or references, e.g. dynamic
objects in C++ (via new and delete), all objects in Java

 Advantage: provides for dynamic storage management

 Disadvantage: inefficient and unreliable

22

Categories of Variables by Lifetimes

 Implicit heap-dynamic--Allocation and deallocation
caused by assignment statements

– all variables in APL; all strings and arrays in Perl and
JavaScript

 Advantage: flexibility

 Disadvantages:

– Inefficient, because all attributes are dynamic

– Loss of error detection

23

Type Checking

 Generalize the concept of operands and operators to include
subprograms and assignments

 Type checking is the activity of ensuring that the operands of
an operator are of compatible types

 A compatible type is one that is either legal for the operator,
or is allowed under language rules to be implicitly converted,
by compiler- generated code, to a legal type

– This automatic conversion is called a coercion

 A type error is the application of an operator to an operand of
an inappropriate type

24

Type Checking (continued)

 If all type bindings are static, nearly all type checking
can be static

 If type bindings are dynamic, type checking must be
dynamic

 A programming language is strongly typed if type errors
are always detected

25

Strong Typing

 Advantage of strong typing: allows the detection of the
misuses of variables that result in type errors

 Language examples:

– FORTRAN 77 is not: parameters, EQUIVALENCE

– Pascal is not: variant records

– C and C++ are not: parameter type checking can be avoided;
unions are not type checked

– Ada is, almost (UNCHECKED CONVERSION is loophole)

 (Java is similar)

26

Strong Typing (continued)

 Coercion rules strongly affect strong typing--they
can weaken it considerably (C++ versus Ada)

 Although Java has just half the assignment
coercions of C++, its strong typing is still far less
effective than that of Ada

27

Name Type Compatibility

 Name type compatibility means the two variables
have compatible types if they are in either the same
declaration or in declarations that use the same
type name

 Easy to implement but highly restrictive:

– Subranges of integer types are not compatible with integer
types

– Formal parameters must be the same type as their
corresponding actual parameters (Pascal)

28

Structure Type Compatibility

 Structure type compatibility means that two
variables have compatible types if their types have
identical structures

 More flexible, but harder to implement

29

Type Compatibility (continued)

 Consider the problem of two structured types:

– Are two record types compatible if they are structurally the
same but use different field names?

– Are two array types compatible if they are the same except
that the subscripts are different?

 (e.g. [1..10] and [0..9])

– Are two enumeration types compatible if their components
are spelled differently?

– With structural type compatibility, you cannot differentiate
between types of the same structure (e.g. different units
of speed, both float)

30

Variable Attributes: Scope

 The scope of a variable is the range of statements over
which it is visible

 The nonlocal variables of a program unit are those that
are visible but not declared there

 The scope rules of a language determine how
references to names are associated with variables

31

Static Scope

 Based on program text

 To connect a name reference to a variable, you (or the
compiler) must find the declaration

 Search process: search declarations, first locally, then in
increasingly larger enclosing scopes, until one is found for the
given name

 Enclosing static scopes (to a specific scope) are called its
static ancestors; the nearest static ancestor is called a static
parent

32

Scope (continued)

 Variables can be hidden from a unit by having a
"closer" variable with the same name

 C++ and Ada allow access to these "hidden"
variables

– In Ada: unit.name

– In C++: class_name::name

33

Blocks

– A method of creating static scopes inside program units--
from ALGOL 60

– Examples:

 C and C++: for (...) {

 int index;

 ...

 }

 Ada: declare LCL : FLOAT;
 begin

 ...

 end

34
Evaluation of Static Scoping

 Assume MAIN calls A and B

 A calls C and D

 B calls A and E

MAIN MAIN

E

A

C

D

B

A B

C D E

35

Static Scope Example

MAIN MAIN

A B

C D E

A

C

B

E D

36

Static Scope (continued)

 Suppose the spec is changed so that D must now
access some data in B

 Solutions:

– Put D in B (but then C can no longer call it and D cannot
access A's variables)

– Move the data from B that D needs to MAIN (but then all
procedures can access them)

 Same problem for procedure access

 Overall: static scoping often encourages many
globals

37
Dynamic Scope

 Based on calling sequences of program units, not their
textual layout (temporal versus spatial)

 References to variables are connected to declarations
by searching back through the chain of subprogram
calls that forced execution to this point

38

Scope Example

MAIN
 - declaration of x
 SUB1
 - declaration of x -
 ...
 call SUB2
 ...

 SUB2
 ...
 - reference to x -
 ...

 ...
 call SUB1
 …

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

39

Scope Example

 Static scoping

– Reference to x is to MAIN's x

 Dynamic scoping

– Reference to x is to SUB1's x

 Evaluation of Dynamic Scoping:

– Advantage: convenience

– Disadvantage: poor readability

40

Scope Example 1 (Perl)

 my vs local

– my marks a variable as private in a lexical scope

– local marks a variable as private in a dynamic scope

$x = 1;

sub foo { print "$x\n"; }

sub bar { local $x; $x = 2; foo(); }

&foo; # prints ???

&bar; # prints ???

&foo; # prints ???

41

Scope Example 2 (Perl)

$var = 5;

print $var, "\n";

&fun1;

print $var, "\n";

subroutines

sub fun1 {

 local $var = 10;

 print $var, "\n";

 &fun2; # calling subroutine fun2

 print $var, "\n";

}

sub fun2 { $var ++; }

42

Scope and Lifetime

 Scope and lifetime are sometimes closely related,
but are different concepts

 Consider a static variable in a C or C++ function

43

Referencing Environments

 The referencing environment of a statement is the collection of
all names that are visible in the statement

 In a static-scoped language, it is the local variables plus all of
the visible variables in all of the enclosing scopes

 In a dynamic-scoped language, the referencing environment is
the local variables plus all visible variables in all active
subprograms

– A subprogram is active if its execution has begun but has not yet
terminated

44

Named Constants

 A named constant is a variable that is bound to a value only
when it is bound to storage

 Advantages: readability and modifiability

 Used to parameterize programs

 The binding of values to named constants can be either static
(called manifest constants) or dynamic

 Languages:

– FORTRAN 90: constant-valued expressions

– Ada, C++, and Java: expressions of any kind

45

Variable Initialization

 The binding of a variable to a value at the time it is
bound to storage is called initialization

 Initialization is often done on the declaration
statement, e.g., in Java

 int sum = 0;

46

Summary

 Case sensitivity and the relationship of names to special
words represent design issues of names

 Variables are characterized by the six-tuples: name, address,
value, type, lifetime, scope

 Binding is the association of attributes with program entities

 Scalar variables are categorized as: static, stack dynamic,
explicit heap dynamic, implicit heap dynamic

 Strong typing means detecting all type errors

47

Homework #3 (part 1)

 Programming Exercise

Write three functions in C or C++: one that declares a large array statically,
one that declares the same large array on the stack, and one that creates
the same large array from the heap. Call each of the subprograms a large
number of times (at least 100,000) and output the time required by each.
Explain the results.

 Problem Solving (P. 229 of class textbook)

– 5, 8, 11, 12

 Due date: One week from assigned date

– Please hand in printed (typed) form
– I do not accept any handwritten assignment

– Exception: pictures

