
1

Programming Languages:

Lecture 3

Chapter 3: Syntax and Semantics

Jinwoo Kim
jwkim@jjay.cuny.edu

mailto:jwkim@jjay.cuny.edu

2

Chapter 3 Topics

• Introduction

• The General Problem of Describing Syntax

• Formal Methods of Describing Syntax

• Attribute Grammars

• Describing the Meanings of Programs: Dynamic
Semantics

3

Introduction

• Syntax: the form or structure of the expressions,
statements, and program units

• Semantics: the meaning of the expressions,
statements, and program units

• Syntax and semantics provide a language’s
definition

– Users of a language definition

– Other language designers

– Implementers

– Programmers (the users of the language)

4The General Problem of Describing Syntax:
Terminology

• A sentence is a string of characters over some alphabet

• A language is a set of sentences

• A lexeme is the lowest level syntactic unit of a language (e.g.,
*, sum, begin)

• A token is a category of lexemes (e.g., identifier)

(Example)

index = 2 * count + 17;

Lexemes

Index

=

2

*

count

+

17

;

Tokens

identifier

equal_sign

int_literal

mult_op

identifier

plus_op

int_literal

semicolon

5

Formal Definition of Languages

• Recognizers

– A recognition device reads input strings of the language and
decides whether the input strings belong to the language

– Example: syntax analysis part of a compiler

– Detailed discussion in Chapter 4

• Generators

– A device that generates sentences of a language

– One can determine if the syntax of a particular sentence is
correct by comparing it to the structure of the generator

6

Formal Methods of Describing Syntax

• Backus-Naur Form and Context-Free Grammars

– Most widely known method for describing programming
language syntax

• Extended BNF

– Improves readability and writability of BNF

• Grammars and Recognizers

7

BNF and Context-Free Grammars

• Context-Free Grammars

– Developed by Noam Chomsky in the mid-1950s

– Language generators, meant to describe the syntax of
natural languages

– Define a class of languages called context-free languages

8

Backus-Naur Form (BNF)

• Backus-Naur Form (1959)

– Invented by John Backus to describe Algol 58

– BNF is equivalent to context-free grammars

– BNF is a metalanguage used to describe another language

– In BNF, abstractions are used to represent classes of
syntactic structures--they act like syntactic variables (also
called nonterminal symbols)

9

BNF Fundamentals

• Non-terminals: BNF abstractions

• Terminals: lexemes and tokens

• Grammar: a collection of rules

– Examples of BNF rules:

<ident_list> → identifier | identifier, <ident_list>

<if_stmt> → if <logic_expr> then <stmt>

10

BNF Rules

• A rule has a left-hand side (LHS) and a right-hand side (RHS),
and consists of terminal and nonterminal symbols

• A grammar is a finite nonempty set of rules

• An abstraction (or nonterminal symbol) can have more than one
RHS

<stmt> → <single_stmt>

| begin <stmt_list> end

11

Describing Lists

• Syntactic lists are described using recursion

<ident_list> → ident

| ident, <ident_list>

• A derivation is a repeated application of rules, starting with the
start symbol and ending with a sentence (all terminal symbols)

12

An Example Grammar

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const

13

An Example Derivation

<program> => <stmts>

=> <stmt>

=> <var> = <expr>

=> a = <expr>

=> a = <term> + <term>

=> a = <var> + <term>

=> a = b + <term>

=> a = b + const

14

Derivation

• Every string of symbols in the derivation is a
sentential form

• A sentence is a sentential form that has only
terminal symbols

• A leftmost derivation is one in which the leftmost
nonterminal in each sentential form is the one that
is expanded

• A derivation may be neither leftmost nor rightmost

15

Parse Tree

• A hierarchical representation of a derivation

<program>

<stmts>

<stmt>

<var> = <expr>

a <term> + <term>

<var> const

b

16

Ambiguity in Grammars

• A grammar is ambiguous if and only if it generates a
sentential form that has two or more distinct parse
trees

17

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

<expr>

<expr>

<expr>

<expr><op>

<expr> <op><expr>

<expr> <op>

<expr> <op> <expr>

const const- const - const/ const / const

<op> <expr>

18

An Unambiguous Expression Grammar

<expr> → <expr> -

<term> → <term> /

• If we use the parse tree to indicate precedence levels of
the operators, we cannot have ambiguity

<term> | <term>

const| const

<expr>

<expr>

<term> <term>

const const

/ const

- <term>

19

Associativity of Operators

• Operator associativity can also be indicated by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr>

const

const

+

+ const

20

21

22

23

24

25

Extended BNF

• Optional parts are placed in brackets []
<proc_call> -> ident [(<expr_list>)]

• Alternative parts of RHSs are placed inside
parentheses and separated via vertical bars
<term> → <term> (+|-) const

• Repetitions (0 or more) are placed inside braces { }
<ident> → letter {letter|digit}

26

BNF and EBNF

• BNF

<expr> → <expr> + <term>

| <expr> - <term>

| <term>

<term> → <term> * <factor>

| <term> / <factor>

| <factor>

• EBNF

<expr> → <term> {(+ | -) <term>}

<term> → <factor> {(* | /) <factor>}

27

28

Summary

• BNF and context-free grammars are equivalent
meta-languages

– Well-suited for describing the syntax of programming
languages

• An attribute grammar is a descriptive formalism that
can describe both the syntax and the semantics of a
language

• Three primary methods of semantics description

– Operation, axiomatic, denotational

29

Homework #2

• Read articles introduced in this lecture

– The Chomsky Hierarchy
– http://jjcweb.jjay.cuny.edu/~jwkim/class/csci374-

summer-25/Chomsky_Hierarchy.pdf

• Problem Solving (Chapter 3)

– 2.c, 3, 6.a, 8, 9, 10, 11, 15, 16, 17

– HW 2

– Refer class homepage for Chapter 3 problems

– Please email your hw in word or pdf format

– No late homework will be accepted

http://jjcweb.jjay.cuny.edu/~jwkim/class/csci374-summer-25/Chomsky_Hierarchy.pdf

