
Introduction to Functional Programming
The functional language community

The functional language community is excessively dour. The functional ascetics forbid
themselves facilities which less pious programmers regard as standard . When using
functional languages we do away with notions such as variables and reassignments. This
allows us to define programs which may be subjected to analysis much more easily.
When a value is assigned it does not change during the execution of the program. This
property is referential transparency. There is no state corresponding to the global
variables of a traditional language or the instances of objects in an object oriented
language. When a definition is made it sticks. Reassignment does not take place. Getting
used to this and finding alternatives the traditional structures such as loops which require
reassignment is one of the hardest tasks for a programmer "converting" from a traditional
language. The line
x := x+1;
may appear in a 3rd generation language and is understood to indicate that 'box' or
'location' referred to as 'x' has its contents incremented at this stage. We do not admit
such concepts. 'x' is 'x' and 'x+1' is one more than x; the one may not be changed into the
other. A program without a state is a simpler thing - it is easier to write the code and
easier to reason about the code once written. It is harder to write poor code.

Functional languages are considered, by their devotees, to be higher level than third
generation languages. Functional languages are regarded as declarative rather than
imperative. Ordinary third generation languages such as Pascal, C (including flavours
such as C++) and assembly instruct the computer on how to solve a problem. A
declarative language is one which the programmer declares what the problem is; the
execution of the program is a low level concern. This is an attitude shared with the logic
language community (Prolog people).

Towards Correct Programs

There has been a great deal of progress in recent years in defining methodologies and
design techniques which allow programs to be constructed more reliably. Some would
claim that object orientation for example builds on and improves on structured
programming which undoubtedly contributes to a better process of software construction.
Using a rational methodology software engineers can produce better code faster - this is
to be applauded, however it does not bring us any closer to the goal of correct programs.
A correct program is not just more reliable - it is reliable. It does not just rarely go wrong
- it cannot go wrong. The correct program should be the philosophers stone for the
programmer, the pole star of our efforts. Software engineering may allow the intellectual
effort of the programmer to be used "more efficiently" however it does not necessarily
give us accurate programs.

Away from testing

Testing is usually regarded as an important stage of the software development cycle.
Testing will never be a substitute for reasoning. Testing may not be used as evidence of
correctness for any but the most trivial of programs. Software engineers some times refer
to "exhaustive" testing when in fact they mean "exhausting" testing. Tests are almost
never exhaustive. Having lots of tests which give the right results may be reassuring but it
can never be convincing. Rather than relying on testing we should be relying in reasoning.
We should be relying on arguments which can convince the reader using logic.

The benefits and costs of correct programs

If correct programs were cheap and easy then we would all use them. In fact the
intellectual effort involved in proving the correctness of even the simplest of programs is
immense. However the potential benefits of a cast iron guarantee on a program would be
attractive in many situations. Certainly in the field of "safety-critical" systems formal
methods may have a role to play. It must however be admitted that the safety of many
such systems cannot be ensured by software - no amount of mathematics is going to
make a weapons system or a complex chemical plant safe. Formal methods may have a
useful part to play in systems where there is a high cost of failure - examples such as
power stations, air traffic control and military systems come to mind. The cost of failure
in any of these cases may be in terms of human life. The really important market for such
systems is in fact in financial systems where the cost of failure is money itself.

Why functional programming

Functional languages such as ML, Hope and Lisp allow us to develop programs which
will submit logical analysis relatively easily. Using a functional language we can make
assertions about programs and prove these assertions to be correct. It is possible to do the
same for traditional, imperative programs - just much harder. It is also possible to write
programs in ML which defy logic - just much harder. A functional language like ML
offers all of the features that we have come to expect from a modern programming
language. Objects may be packaged with details hidden. Input and output tend to be
rather more primitive then we might expect, however there are packages which allow ML
to interface with front ends such as X-windows.

Functional languages are particularly well suited to parallel processing - several research
projects have demonstrated superior performance on parallel machines.

Summary

We compare Formal Methods and Functional Programming with some traditional
Imperative Programming and traditional software engineering:

Imperative Programming &

Traditional Software
Engineering

Functional Programming & Formal
Methods

The Using informal language a Using logic we can state the

Development
Cycle

specification may be open to
interpretation. Using
appropriate testing strategies we
can improve confidence - but
not in any measurable way.

Mistakes/bugs are common and
difficult to spot and correct.

specification exactly. Using
mathematics we may be able to prove
useful properties of our programs.

Mistakes/bugs are common and difficult
to spot and correct.

The
Development

Language

Using structured programming
or object oriented techniques we
can reuse code. Using
structured programming or
object orientation we can
partition the problem into more
manageable chunks.

Using structured programming or object
oriented techniques we can reuse code.
We can partition the problem into easy
to use chunks - plus there are often
"higher-level" abstractions which can be
made ML which would be difficult or
impossible in a traditional language.

The Run-time
System

The compiler can produce fast
compact code taking a fixed
amount of memory.
Parallel processing is not
possible (in general).
Fancy GUI's may be added.

The memory requirements are large and
unpredicatable.
Parallel processing is possible.
Fancy GUI's may be added, with
difficulty.

Introduction to ML
This is aimed at students with some programming skills, but new to functional languages.
It consists almost entirely of exercises and diversions; these are intended to be completed
at a machine with at least some supervision. It is not intended to replace teaching. It will
most likely be possible to copy text from the hyper text viewer (possibly Netscape or
Mosaic) and paste it directly into a window in which ML is running thus saving at least
some re-typing.

Learning
This document is an attempt to guide the student in learning rather than to present the
syntax and theory in an ordered fashion. A considerable amount of time must be invested
in learning a new language; with ML it's worth it.

"Hello world"
All of the following tutorial material has been developed for Standard ML. It has been
used with New Jersey ML and Edinburgh ML but should work with any other version.
The ML prompt is "-". Expressions typed in are immediately evaluated and usually

displayed together with the resulting type. Expressions are terminated with ";" Using
New Jersey ML the following dialogue might take place:
- "Hello World";
val it = "Hello World" : string
When used normally the ML accepts expressions and evaluates them. The result is
printed to the screen together with the type of the result. The last result calculated may be
referred to as it. In the example above the interpreter does not have to do any work to
calculate the value of the expression entered - the expression is already in its simplest - or
normal form. A trickier example would be the expression 3+4 this is evaluated to the
value 7.
- 3+4;
it = 7 : int
Notice that the expression to be evaluated is terminated by a semicolon. The interpreter
allows expressions to go over more than one line. Where this happens the prompt
changes to "=" for example:
- 4 + 4 +
= 4;
val it = 12 : int

Defining functions
A function may be defined using the keyword fun. Simple function definitions take the
form:
fun = ;
For example
fun double x = 2*x;
fun inc x = x+1;
fun adda s = s ^ "a";
These functions may be entered as above. To execute a function simply give the function
name followed by the actual argument. For example:
double 6;
inc 100;
adda "tub";
The system should give you the values 12: int and 101 : int and "tuba" : string
for the expressions above.

Types
The basic types available are integer, real, string, char, boolean. From these we can
construct objects using tuples, lists, functions and records, we can also create our own
base types - more of this later. A tuple is a sequence of objects of mixed type. Some
tuples:
(2,"Andrew") : int * string
(true,3.5,"x") : bool * real * string
((4,2),(7,3)) : (int * int) * (int * int)
While a tuple allows its components to be of mixed type and is of fixed length, a list must
have identically typed components and may be of any length. Some lists:
[1,2,3] : int list
["Andrew","Ben"] : string list

[(2,3),(2,2),(9,1)] : (int * int) list
[[],[1],[1,2]] : int list list
Note that the objects [1,2] and [1,2,3] have the same type int list but the objects
(1,2) and (1,2,3) are of different types, int*int and int*int*int respectively. It is
important to notice the types of objects and be aware of the restrictions. While you are
learning ML most of your mistakes are likely to get caught by the type checking
mechanism.

Polymorphism
Polymorphism allows us to write generic functions - it means that the types need not be
fixed. Consider the function length which returns the length of a list. This is a pre-defined
function. Obviously it does not matter if we are finding the length of a list of integers or
strings or anything. The type of this function is thus
length : 'a list -> int
the type variable 'a can stand for any ML type.

Bindings
A binding allows us to refer to an item as a symbolic name. Note that a label is not the
same thing as a variable in a 3rd generation language. The key word to create a binding is
val. The binding becomes part of the environment. During a typical ML session you will
create bindings thus enriching the global environment and evaluate expressions. If you
enter an expression without binding it the interpreter binds the resulting value to it.
- val a = 12;
val a = 12 : int
- 15 + a;
val it = 27 : int

Pattern Matching
Unlike most other languages ML allows the left hand side of an assignment to be a
structure. ML "looks into" the structure and makes the appropriate binding.
- val (d,e) = (2,"two");
val d = 2 : int
val e = "two" : string
- val [one,two,three] = [1,2,3];
std_in:0.0-0.0 Warning: binding not exhaustive
 one :: two :: three :: nil = ...
val one = 1 : int
val two = 2 : int
val three = 3 : int
Note that the second series of bindings does succeed despite the dire sounding warning -
the meaning of the warning may become clear later.

Lists
The list is a phenomenally useful data structure. A list in ML is like a linked list in C or
PASCAL but without the excruciating complexities of pointers. A list is a sequence of
items of the same type. There are two list constructors, the empty list nil and the cons

operator ::. The nil constructor is the list containing nothing, the :: operator takes an item
on the left and a list on the right to give a list one longer than the original. Examples
nil []
1::nil [1]
2::(1::nil) [2,1]
3::(2::(1::nil)) [3,2,1]
In fact the cons operator is right associative and so the brackets are not required. We can
write 3::2::1::nil for [3, 2, 1]. Notice how :: is always between an item and a list. The
operator :: can be used to add a single item to the head of a list. The operator @ is used to
append two lists together. It is a common mistake to confuse an item with a list
containing a single item. For example to obtain the list starting with 4 followed by [5,6,7]
we may write 4::[5,6,7] or [4]@[5,6,7] however 4@[5,6,7] or [4]::[5,6,7] both break the
type rules.
:: : 'a * 'a list -> 'a list
nil : 'a list
To put 4 at the back of the list [5,6,7] we might try [5,6,7]::4 however this breaks the type
rules in both the first and the second parameter. We must use the expression [5,6,7]@[4]
to get [5,6,7,4]

Curry
A function of more than one argument may be implemented as a function of a tuple or a
"curried" function. (After H B Curry). Consider the function to add two integers Using
tuples
- fun add(x,y)= x+y : int;
val add = fn int * int -> int
The input to this function is an int*int pair. The Curried version of this function is
defined without the brackets or comma:
- fun add x y = x+y : int;
val add = fn : int -> int -> int
The type of this function is int->(int->int). It is a function which takes an integer and
returns a function from an integer to an integer. We can give both arguments without
using a tuple
- add 2 3;
it = 5 : int
Giving one argument results in a "partial evaluation" of the function. For example,
applying the function add to the number 2 alone results in a function which adds two to
its input:
- add 2;
it = fn int-> int
- it 3;
it = 5 : int
Curried functions can be useful - particularly when supplying function as parameters to
other functions.

Pattern Matching

In the examples so far we have been able to define functions using a single equation. If
we need a function which responds to different input we would use the if _ then _ else
structure or a case statement in a traditional language. We may use if then else in ML
however pattern matching is preferred. Example: To change a verb from present to past
tense we usually add "ed" as a suffix. The function past does this.

past "clean" = "cleaned" past "polish" = "polished"
There are irregular verbs which must be treated as special cases such as run -> ran.
fun past "run" = "ran"
| past "swim" = "swam"
| past x = x ^ "ed";
When a function call is evaluated the system attempts to match the input (the actual
parameter) with each equation in turn. Thus the call past "swim" is matched at the second
attempt. The final equation has the free variable x as the formal parameter - this will
match with any string not caught by the previous equations. In evaluating past
"stretch" ML will fail to match the first two equations - on reaching the last equation x
is temporarily bound to "stretch" and the right hand side, x^"ed" becomes
"stretch"^"ed" evaluated to "stretched".

In the following examples we use exactly two patterns for our functions. The first pattern
is the base case which is typically 0 or 1 the second is n which matches with all other
numbers.
A typical function takes the form:

fun f(0) = ?? The equation used when the input is zero
| f(n) = ?? The equation used when n is 1 or 2 or 3 ...

More on pattern matching later....

Recursion
Using recursive functions we can achieve the sort of results which would require loops in
a traditional language. Recursive functions tend to be much shorter and clearer. A
recursive function is one which calls itself either directly or indirectly. Traditionally, the
first recursive function considered is factorial.
n n! Calculated as
0 1
1 1*0! = 1*1 = 1
2 2*1! = 2*1 = 2
3 3*2! = 3*2 = 6
4 4*3! = 4*6 = 24
5 5*4! = 5*24 = 120
6 6*5! = 6*120 = 720
7 7*6! = 7*720 = 5040
...
12 12*11*10*..2*1 = 479001600
A mathematician might define factorial as follows
0! = 1

n! = n.(n-1)! for n>0
Using the prefix factorial in place of the postfix ! and using * for multiplication we have
fun factorial 0 = 1
| factorial n = n * factorial(n-1);
This agrees with the definition and also serves as an implementation. To see how this
works consider the execution of factorial 3. As 3 cannot be matched with 0 the second
equation is used and we bind n to 3 resulting in
factorial 3 = 3 * factorial(3-1) = 3*factorial(2)
This generates a further call to factorial before the multiplication can take place. In
evaluating factorial 2 the second equation is used but this time n is bound to 2.
factorial 2 = 2 * factorial(2-1) = 2*factorial(1)
Similarly this generates the call
factorial 1 = 1 * factorial 0
The expression factorial 0 is dealt with by the first equation - it returns the value 1.
We can now "unwind" the recursion.
factorial 0 = 1
factorial 1 = 1 * factorial 0 = 1*1 = 1
factorial 2 = 2 * factorial 1 = 2*1 = 2
factorial 3 = 3 * factorial 2 = 3*2 = 6
Note that in practice, execution of this function requires stack space for each call and so
in terms of memory use the execution of a recursive program is less efficient than a
corresponding iterative program.

Take care
It is very easy to write a non-terminating recursive function. Consider what happens if we
attempt to execute factorial ~1 (the tilde ~ is used as unary minus). To stop a non
terminating function press control C. Be warned that some functions consume processing
time and memory at a frightening rate. Do not execute the function:
fun bad x = (bad x)^(bad x);

List processing and pattern matching

sum of a list

Consider the function sum which adds all the elements of a list.
sum [2,3,1] = 2 + 3 + 1 = 6
There are two basic patterns for a list - that is there are two list constructors, :: and nil.
The symbol :: is called cons, it has two components, nil is the empty list We can write
equations for each of these constructors with completely general components. The empty
list is easy - sum of all the elements in the empty list is zero.
 sum nil = 0
In the cons case we need to consider the value of sum(h::t). Where h is the head of the
list - in this case an integer - and t is the tail of the list - i.e. the rest of the list. In
constructing recursive functions we can assume that the function works for a case which
is in some sense "simpler" than the original. This leap of faith becomes easier with

practice. In this case we can assume that function sum works for t. We can use the value
sum t on the right hand side of the definition.
 sum(h::t) = ??? sum(t);
We are looking for an expression which is equal to sum(h::t) and we may use sum t in
that expression. Clearly the difference between sum(h::t) and sum(t) is h. That is, to
get from sum(t) to sum(h::t) simply add h
fun sum nil = 0
| sum(h::t) = h + sum t;

appending (joining) two lists

The infix append function @ is already defined however we may derive its definition as
follows The append operator joins two lists, for example
[1,2,3] @ [4,5,6] = [1,2,3,4,5,6]
The definition of an infix operator allows the left hand side to be written in infix. Given
two parameters we have a choice when it comes to deciding how to recurse. If we choose
to recurse on the second parameter the equations will be
fun x @ nil = ??
| x @ (h::t) = ??;
It turns out that this does not lead to a useful definition - we need to recurse on the first
parameter, giving
fun nil @ x = ??
| (h::t) @ x = ??;
The first equation is easy, if we append nil to the front of x we just get x. The second
equation is more difficult. The list h::t is to be put to the front of x. The result of this is h
cons'ed onto the list made up of t and x. The resulting list will have h at the head
followed by t joined onto x. We make use of the @ operator within its own definition.
fun nil @ x = x
| (h::t) @ x = h::(t @ x);
Of course the @ operator is already defined. Note that the actual definition used is
slightly different. Example: doublist Consider the function doublist which takes a list and
doubles every element of it.
doublist [5,3,1] = [10,6,2]
Again we consider the two patterns nil and (h::t). The base case is nil
 doublist nil = nil
A common mistake is to think doublist nil is 0. Just by looking at the type we can see that
this would be nonsense. The output from doublist must be a list, not an integer. In
considering the cons case an example may help. Imagine the execution of a particular list
say doublist [5,3,1]. We rewrite [5,3,1] as 5::[3,1] and consider the second equation.
 doublist(5::[3,1]) = ??? doublist [3,1]
Thanks to our faith in recursion we know that doublist[3,1] is in fact [6,2] and so we ask
what do we do to [6,2] to get our required answer [10,6,2]. We answer "stick ten on the
front".
 doublist(5::[3,1]) = 10::doublist [3,1]
Returning to the general case with h and t instead of 5 and [3,1]:
 doublist(h::t) = 2*h :: doublist t

if .. then .. else ..

Sometimes pattern matching is not convenient. We may wish to compare values for
example, in these cases the if .. then .. else .. structure is useful.

The expression if B then S1 else S2 tests the boolean expression B, it returns the
value of S1 or the value of S2 depending on the value of B.

For example

if 1 = 0 then "I am the pope." else "someone else is the pope.";
Returns the string "someone else is the pope."

The following function "tells us" about a string s. A palimdrome is a word which is the
same backwards as forwards.

fun pali s = if explode s = rev(explode s) then s ^ " is a palindrome."
 else s ^ " is not a palindrome.";
We can go further - the sentence is the same in both cases, except the substring "not " is
missing in one case - this allows..
fun pal2 s = s^" is "^(if explode s = rev(explode s) then "" else "not
") ^
 "a palindrome.";
In some languages the else part is optional - that would make no sense in ML as the
expression must return a value.

The @ operator
The append operator is defined in the file "/usr/local/software/nj-sml-
93/src/boot/perv.sml" and is given as:
 infixr 5 :: @
 fun op @(x,nil) = x
 | op @(x,l) =
 let fun f(nil,l) = l
 | f([a],l) = a::l
 | f([a,b],l) = a::b::l
 | f([a,b,c],l) = a::b::c::l
 | f(a::b::c::d::r,l) = a::b::c::d::f(r,l)
 in f(x,l)

 end
This version may be shown to be equivalent to the simpler:
 infixr 5 :: @
 fun nil @ l = l
 | (h::t)@ l = h::(t@l)
but it will run faster.

Pattern matching and recursion
When defining a function over a list we commonly use the two patterns
fun lfun nil = ...
| lfun(h::t) = ... lfun t ...;
However this need not always be the case. Consider the function last, which returns the
last element of a list.
last [4,2,5,1] = 1
last ["sydney","beijeng","manchester"] = "manchester"
The two patterns do not apply in this case. Consider the value of last nil. What is the last
element of the empty list? This is not a simple question like "what is the product of an
empty list". The expression last nil has no sensible value and so we may leave it
undefined. Instead of having the list of length zero as base case we start at the list of
length one. This is the pattern [h], it matches any list containing exactly one item.
fun last [h] = h
| last(h::t) = last t;
This function has two novel features.

Incompleteness
When we enter the function as above ML responds with a warning such as
std_in:217.1-218.23 Warning: match non exhaustive
 h :: nil => ...
 h :: t => ...
The function still works, however ML is warning us that the function has not been
defined for all values, we have missed a pattern - namely nil. The expression last nil is
well-formed (that is it obeys the type rules) however we have no definition for it. It is an
incomplete or partial function as opposed to the complete or total functions that we have
seen thus far. You will naturally want to know how ML does treat the expression last nil.
The warning given is a mixed blessing. Under certain circumstances a partial function is
very useful and there is no merit in making the function total. However if we manage to
compile a program with no warnings and avoid all partial functions we are (almost)
guaranteed no run-time errors. The exhaustive checking of input patterns can be non-
trivial, in fact the algorithm which is used in non polynomial.

Overlapping left hand sides
As the pattern [h] is identical to the pattern h::nil we might rewrite the definition
fun last(h::nil) = h
| last(h::t) = last t;
Examining the patterns of the left hand side of the = we note that there is an overlap. An
expression such as 5::nil will match with both the first equation (binding h to 5) and the
second equation (binding h to 5 and t to nil). Clearly it is the first line which we want and
indeed ML will always attempt to match with patterns in the order that they appear. Note
that this is not really a novel feature as all of our first examples with the patterns x and 0
had overlapping left hand sides.

Conditions
Where possible we use pattern matching to deal with conditions, in some cases this is not
possible. We return to the function to convert present to past tense. The general rule - that
we append "ed" does not apply if the last letter of the verb is "e". We can examine the last
character of the input by applying explode then rev then hd. The improved version of past
should give
past "turn" = "turned"
past "insert" = inserted"
past "change" = "changed"
The special case irregular verbs are dealt with as before:
fun past "run" = "ran"
| past "swim" = "swam"
| past x = if hd(rev(explode x))="e" then x^"d"
 else x^"ed";

