
perlintro -- a brief introduction and overview of Perl

This document is intended to give you a quick overview of the Perl programming language, along with
pointers to further documentation. It is intended as a "bootstrap" guide for those who are new to the
language, and provides just enough information for you to be able to read other peoples' Perl and
understand roughly what it's doing, or write your own simple scripts.

This introductory document does not aim to be complete. It does not even aim to be entirely accurate.
In some cases perfection has been sacrificed in the goal of getting the general idea across. You are

advised to follow this introduction with more information from the full Perl manual, the table of
contents to which can be found in .

Throughout this document you'll see references to other parts of the Perl documentation. You can
read that documentation using the command or whatever method you're using to read this
document.

Perl is a general-purpose programming language originally developed for text manipulation and now
used for a wide range of tasks including system administration, web development, network
programming, GUI development, and more.

The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny,
elegant, minimal). Its major features are that it's easy to use, supports both procedural and
object-oriented (OO) programming, has powerful built-in support for text processing, and has one of
the world's most impressive collections of third-party modules.

Different definitions of Perl are given in , and no doubt other places. From this we can
determine that Perl is different things to different people, but that lots of people think it's at least worth
writing about.

To run a Perl program from the Unix command line:

Alternatively, put this as the first line of your script:

... and run the script as . Of course, it'll need to be executable first, so
(under Unix).

For more information, including instructions for other platforms such as Windows and Mac OS, read
.

A Perl script or program consists of one or more statements. These statements are simply written in
the script in a straightforward fashion. There is no need to have a function or anything of that
kind.

Perl statements end in a semi-colon:

Comments start with a hash symbol and run to the end of the line

Perl version 5.8.8 documentation - perlintro

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

strongly
perltoc

perl perlfaq1

perlrun

perldoc

/path/to/script.pl chmod
755 script.pl

main()

What is Perl?

Running Perl programs

Basic syntax overview

perl progname.pl

#!/usr/bin/env perl

print "Hello, world";

Whitespace is irrelevant:

... except inside quoted strings:

Double quotes or single quotes may be used around literal strings:

However, only double quotes "interpolate" variables and special characters such as newlines ():

Numbers don't need quotes around them:

You can use parentheses for functions' arguments or omit them according to your personal taste.
They are only required occasionally to clarify issues of precedence.

More detailed information about Perl syntax can be found in .

Perl has three main variable types: scalars, arrays, and hashes.

Scalars

A scalar represents a single value:

Scalar values can be strings, integers or floating point numbers, and Perl will automatically
convert between them as required. There is no need to pre-declare your variable types.

Scalar values can be used in various ways:

There are a number of "magic" scalars with names that look like punctuation or line noise.
These special variables are used for all kinds of purposes, and are documented in .
The only one you need to know about for now is which is the "default variable". It's used as
the default argument to a number of functions in Perl, and it's set implicitly by certain looping

Perl version 5.8.8 documentation - perlintro

Page 2http://perldoc.perl.org

This is a comment

print
"Hello, world"
;

this would print with a linebreak in the middle
print "Hello
world";

print "Hello, world";
print ’Hello, world’;

print "Hello, $name\n"; # works fine
print ’Hello, $name\n’; # prints $name\n literally

print 42;

print("Hello, world\n");
print "Hello, world\n";

my $animal = "camel";
my $answer = 42;

print $animal;
print "The animal is $animal\n";
print "The square of $answer is ", $answer * $answer, "\n";

\n

$_

perlsyn

perlvar

Perl variable types

constructs.

Arrays

An array represents a list of values:

Arrays are zero-indexed. Here's how you get at elements in an array:

The special variable tells you the index of the last element of an array:

You might be tempted to use to tell you how many items there are in an array.
Don't bother. As it happens, using where Perl expects to find a scalar value ("in
scalar context") will give you the number of elements in the array:

The elements we're getting from the array start with a because we're getting just a single
value out of the array -- you ask for a scalar, you get a scalar.

To get multiple values from an array:

This is called an "array slice".

You can do various useful things to lists:

There are a couple of special arrays too, such as (the command line arguments to your
script) and (the arguments passed to a subroutine). These are documented in .

Hashes

A hash represents a set of key/value pairs:

You can use whitespace and the operator to lay them out more nicely:

To get at hash elements:

You can get at lists of keys and values with and .

Perl version 5.8.8 documentation - perlintro

Page 3http://perldoc.perl.org

print; # prints contents of $_ by default

my @animals = ("camel", "llama", "owl");
my @numbers = (23, 42, 69);
my @mixed = ("camel", 42, 1.23);

print $animals[0]; # prints "camel"
print $animals[1]; # prints "llama"

print $mixed[$#mixed]; # last element, prints 1.23

if (@animals < 5) { ... }

@animals[0,1]; # gives ("camel", "llama");
@animals[0..2]; # gives ("camel", "llama",

"owl");
@animals[1..$#animals]; # gives all except the first

element

my @sorted = sort @animals;
my @backwards = reverse @numbers;

my %fruit_color = ("apple", "red", "banana", "yellow");

my %fruit_color = (
apple => "red",
banana => "yellow",

);

$fruit_color{"apple"}; # gives "red"

$#array

$#array + 1
@array

$

@ARGV
@_

=>

keys() values()

perlvar

Hashes have no particular internal order, though you can sort the keys and loop through them.

Just like special scalars and arrays, there are also special hashes. The most well known of
these is which contains environment variables. Read all about it (and other special
variables) in .

Scalars, arrays and hashes are documented more fully in .

More complex data types can be constructed using references, which allow you to build lists and
hashes within lists and hashes.

A reference is a scalar value and can refer to any other Perl data type. So by storing a reference as
the value of an array or hash element, you can easily create lists and hashes within lists and hashes.
The following example shows a 2 level hash of hash structure using anonymous hash references.

Exhaustive information on the topic of references can be found in , , and
.

Throughout the previous section all the examples have used the syntax:

The is actually not required; you could just use:

However, the above usage will create global variables throughout your program, which is bad
programming practice. creates lexically scoped variables instead. The variables are scoped to the
block (i.e. a bunch of statements surrounded by curly-braces) in which they are defined.

Perl version 5.8.8 documentation - perlintro

Page 4http://perldoc.perl.org

my @fruits = keys %fruit_colors;
my @colors = values %fruit_colors;

my $variables = {
scalar => {

description => "single item",
sigil => ’$’,
},

array => {
description => "ordered list of items",
sigil => ’@’,
},

hash => {
description => "key/value pairs",
sigil => ’%’,
},

};

print "Scalars begin with a $variables->{’scalar’}->{’sigil’}\n";

my $var = "value";

$var = "value";

my $a = "foo";
if ($some_condition) {

my $b = "bar";
print $a; # prints "foo"
print $b; # prints "bar"

}
print $a; # prints "foo"

%ENV

my

my

perlvar

perldata

perlreftut perllol perlref perldsc

Variable scoping

Using in combination with a at the top of your Perl scripts means that the
interpreter will pick up certain common programming errors. For instance, in the example above, the
final would cause a compile-time error and prevent you from running the program. Using

is highly recommended.

Perl has most of the usual conditional and looping constructs except for case/switch (but if you really
want it, there is a Switch module in Perl 5.8 and newer, and on CPAN. See the section on modules,
below, for more information about modules and CPAN).

The conditions can be any Perl expression. See the list of operators in the next section for information
on comparison and boolean logic operators, which are commonly used in conditional statements.

if

There's also a negated version of it:

This is provided as a more readable version of .

Note that the braces are required in Perl, even if you've only got one line in the block.
However, there is a clever way of making your one-line conditional blocks more English like:

while

There's also a negated version, for the same reason we have :

You can also use in a post-condition:

Perl version 5.8.8 documentation - perlintro

Page 5http://perldoc.perl.org

print $b; # prints nothing; $b has fallen out of scope

if (condition) {
...

} elsif (other condition) {
...

} else {
...

}

unless (condition) {
...

}

the traditional way
if ($zippy) {

print "Yow!";
}

the Perlish post-condition way
print "Yow!" if $zippy;
print "We have no bananas" unless $bananas;

while (condition) {
...

}

until (condition) {
...

}

print "LA LA LA\n" while 1; # loops forever

my use strict;

print $b
strict

if (!)

unless

while

Conditional and looping constructs

condition

for

Exactly like C:

The C style for loop is rarely needed in Perl since Perl provides the more friendly list scanning
loop.

foreach

For more detail on looping constructs (and some that weren't mentioned in this overview) see .

Perl comes with a wide selection of builtin functions. Some of the ones we've already seen include
, and . A list of them is given at the start of and you can easily read

about any given function by using .

Perl operators are documented in full in , but here are a few of the most common ones:

Arithmetic

Numeric comparison

String comparison

(Why do we have separate numeric and string comparisons? Because we don't have special
variable types, and Perl needs to know whether to sort numerically (where 99 is less than 100)
or alphabetically (where 100 comes before 99).

Perl version 5.8.8 documentation - perlintro

Page 6http://perldoc.perl.org

for ($i=0; $i <= $max; $i++) {
...

}

foreach (@array) {
print "This element is $_\n";

}

you don’t have to use the default $_ either...
foreach my $key (keys %hash) {

print "The value of $key is $hash{$key}\n";
}

+ addition
- subtraction
* multiplication
/ division

== equality
!= inequality
< less than
> greater than
<= less than or equal
>= greater than or equal

eq equality
ne inequality
lt less than
gt greater than
le less than or equal
ge greater than or equal

foreach

print sort reverse
perldoc -f

perlsyn

perlfunc

perlop

Builtin operators and functions

functionname

Boolean logic

(, and aren't just in the above table as descriptions of the operators -- they're also
supported as operators in their own right. They're more readable than the C-style operators,
but have different precedence to and friends. Check for more detail.)

Miscellaneous

Many operators can be combined with a as follows:

You can open a file for input or output using the function. It's documented in extravagant
detail in and , but in short:

You can read from an open filehandle using the operator. In scalar context it reads a single line
from the filehandle, and in list context it reads the whole file in, assigning each line to an element of
the list:

Reading in the whole file at one time is called slurping. It can be useful but it may be a memory hog.
Most text file processing can be done a line at a time with Perl's looping constructs.

The operator is most often seen in a loop:

We've already seen how to print to standard output using . However, can also
take an optional first argument specifying which filehandle to print to:

When you're done with your filehandles, you should them (though to be honest, Perl will
clean up after you if you forget):

Perl version 5.8.8 documentation - perlintro

Page 7http://perldoc.perl.org

&& and
|| or
! not

= assignment
. string concatenation
x string multiplication
.. range operator (creates a list of numbers)

$a += 1; # same as $a = $a + 1
$a -= 1; # same as $a = $a - 1
$a .= "\n"; # same as $a = $a . "\n";

open(INFILE, "input.txt") or die "Can’t open input.txt: $!";
open(OUTFILE, ">output.txt") or die "Can’t open output.txt: $!";
open(LOGFILE, ">>my.log") or die "Can’t open logfile: $!";

my $line = <INFILE>;
my @lines = <INFILE>;

while (<INFILE>) { # assigns each line in turn to $_
print "Just read in this line: $_";

}

print STDERR "This is your final warning.\n";
print OUTFILE $record;
print LOGFILE $logmessage;

close INFILE;

and or not

&&

=

open()

<>

<> while

print() print()

close()

perlop

perlfunc perlopentut

Files and I/O

Perl's regular expression support is both broad and deep, and is the subject of lengthy documentation
in , , and elsewhere. However, in short:

Simple matching

The matching operator is documented in . It operates on by default, or can be
bound to another variable using the binding operator (also documented in).

Simple substitution

The substitution operator is documented in .

More complex regular expressions

You don't just have to match on fixed strings. In fact, you can match on just about anything
you could dream of by using more complex regular expressions. These are documented at
great length in , but for the meantime, here's a quick cheat sheet:

Quantifiers can be used to specify how many of the previous thing you want to match on,
where "thing" means either a literal character, one of the metacharacters listed above, or a
group of characters or metacharacters in parentheses.

Some brief examples:

Perl version 5.8.8 documentation - perlintro

Page 8http://perldoc.perl.org

if (/foo/) { ... } # true if $_ contains "foo"
if ($a =~ /foo/) { ... } # true if $a contains "foo"

s/foo/bar/; # replaces foo with bar in $_
$a =~ s/foo/bar/; # replaces foo with bar in $a
$a =~ s/foo/bar/g; # replaces ALL INSTANCES of foo with

bar in $a

. a single character
\s a whitespace character (space, tab, newline)
\S non-whitespace character
\d a digit (0-9)
\D a non-digit
\w a word character (a-z, A-Z, 0-9, _)
\W a non-word character
[aeiou] matches a single character in the given set
[^aeiou] matches a single character outside the given

set
(foo|bar|baz) matches any of the alternatives specified

^ start of string
$ end of string

* zero or more of the previous thing
+ one or more of the previous thing
? zero or one of the previous thing
{3} matches exactly 3 of the previous thing
{3,6} matches between 3 and 6 of the previous thing
{3,} matches 3 or more of the previous thing

/^\d+/ string starts with one or more digits
/^$/ nothing in the string (start and end are

adjacent)
/(\d\s){3}/ a three digits, each followed by a whitespace

character (eg "3 4 5 ")
/(a.)+/ matches a string in which every odd-numbered

Regular expressions

perlrequick perlretut

perlop
perlop

perlop

perlre

// $_
=~

s///

Parentheses for capturing

As well as grouping, parentheses serve a second purpose. They can be used to capture the
results of parts of the regexp match for later use. The results end up in , and so on.

Other regexp features

Perl regexps also support backreferences, lookaheads, and all kinds of other complex details.
Read all about them in , , and .

Writing subroutines is easy:

What's that ? Well, the arguments to a subroutine are available to us as a special array called
(see for more on that). The default argument to the function just happens to be .

So shifts the first item off the list of arguments and assigns it to
.

We can manipulate in other ways too:

Subroutines can also return values:

For more information on writing subroutines, see .

OO Perl is relatively simple and is implemented using references which know what sort of object they
are based on Perl's concept of packages. However, OO Perl is largely beyond the scope of this
document. Read , , and .

Perl version 5.8.8 documentation - perlintro

Page 9http://perldoc.perl.org

letter is a (eg "abacadaf")

This loop reads from STDIN, and prints non-blank lines:
while (<>) {

next if /^$/;
print;

}

a cheap and nasty way to break an email address up into parts

if ($email =~ /([^@]+)@(.+)/) {
print "Username is $1\n";
print "Hostname is $2\n";

}

sub log {
my $logmessage = shift;
print LOGFILE $logmessage;

}

my ($logmessage, $priority) = @_; # common
my $logmessage = $_[0]; # uncommon, and ugly

sub square {
my $num = shift;
my $result = $num * $num;
return $result;

}

$1 $2

shift
@_ shift @_

my $logmessage = shift;
$logmessage

@_

perlrequick perlretut perlre

perlvar

perlsub

perlboot perltoot perltooc perlobj

Writing subroutines

OO Perl

As a beginning Perl programmer, your most common use of OO Perl will be in using third-party
modules, which are documented below.

Perl modules provide a range of features to help you avoid reinventing the wheel, and can be
downloaded from CPAN (http://www.cpan.org/). A number of popular modules are included with the
Perl distribution itself.

Categories of modules range from text manipulation to network protocols to database integration to
graphics. A categorized list of modules is also available from CPAN.

To learn how to install modules you download from CPAN, read

To learn how to use a particular module, use . Typically you will want to
, which will then give you access to exported functions or an OO interface to the

module.

contains questions and answers related to many common tasks, and often provides
suggestions for good CPAN modules to use.

describes Perl modules in general. lists the modules which came with your Perl
installation.

If you feel the urge to write Perl modules, will give you good advice.

Kirrily "Skud" Robert <skud@cpan.org>

Perl version 5.8.8 documentation - perlintro

Page 10http://perldoc.perl.org

Using Perl modules

perlmodinstall

perlfaq

perlmod perlmodlib

perlnewmod

perldoc
use

Module::Name
Module::Name

AUTHOR

