

1

Programming Languages:

Lecture 11

Chapter 9: Subprograms

Jinwoo Kim
jwkim@jjay.cuny.edu

2

Chapter 9 Topics

 Introduction

 Fundamentals of Subprograms

 Design Issues for Subprograms

 Local Referencing Environments

 Parameter-Passing Methods

 Parameters That Are Subprogram Names

 Overloaded Subprograms

 Generic Subprograms

 Design Issues for Functions

 User-Defined Overloaded Operators

 Coroutines

3

Introduction

 Two fundamental abstraction facilities

– Process abstraction

– Emphasized from early days

– Data abstraction

– Emphasized in the1980s

4

Fundamentals of Subprograms

 Each subprogram has a single entry point

 The calling program is suspended during execution

of the called subprogram

 Control always returns to the caller when the called

subprogram’s execution terminates

5

Basic Definitions

 A subprogram definition describes the interface to and the

actions of the subprogram abstraction

 A subprogram call is an explicit request that the subprogram

be executed

 A subprogram header is the first part of the definition,

including the name, the kind of subprogram, and the formal

parameters

 The parameter profile (aka signature) of a subprogram is the

number, order, and types of its parameters

 The protocol is a subprogram’s parameter profile and, if it is a

function, its return type

6

Basic Definitions (continued)

 Function declarations in C and C++ are often called

prototypes

 A subprogram declaration provides the protocol, but not the

body, of the subprogram

 A formal parameter is a dummy variable listed in the

subprogram header and used in the subprogram

 An actual parameter represents a value or address used in the

subprogram call statement

7

Actual/Formal Parameter Correspondence

 Binding of actual parameters to formal ones

– Positional vs. Keyword

 Positional

– The binding of actual parameters to formal parameters is by

position: the first actual parameter is bound to the first formal

parameter and so forth

– Used in most languages

– Safe and effective as long as the parameter lists are relatively

short

– Example (Python)

– sumer (my_length, my_array, my_sum);

8

Actual/Formal Parameter Correspondence
(Continued)

 Keyword

– The name of the formal parameter to which an actual

parameter is to be bound is specified with the actual parameter

– Adv: Parameters can appear in any order

– Disadv: user of the subprogram must know the names of formal

parameters

– Example (Python)

– sumer (sum = my_sum, list = my_array, length = my_length)

– sumer (my_length, list = my_array, sum = my_sum)

9

Formal Parameter Default Values

 In certain languages (e.g., C++, Ada, Python, Fuby,

PHP), formal parameters can have default values (if

not actual parameter is passed)

– Example (Python)

– def compute_pay (income, exemptions = 1, tax_rate)

– pay = compute_pay(20000.0, tax_rate = 0.15)

– In C++, default parameters must appear last because

parameters are positionally associated

– float compute_pay (float income, float tax_rate, int exemptions = 1);

– pay = compute_pay (20000.0, 0.15);

 C# methods can accept a variable number of

parameters as long as they are of the same type

10

Procedures and Functions

 There are two distinct categories of subprograms

– Procedures are collection of statements that define

parameterized computations

– Functions structurally resemble procedures but are

semantically modeled on mathematical functions

– They are expected to produce no side effects

– In practice, program functions have side effects

11

Design Issues for Subprograms

 What parameter passing methods are provided?

 Are parameter types checked?

 Are local variables static or dynamic?

 Can subprogram definitions appear in other

subprogram definitions?

 Can subprograms be overloaded?

 Can subprogram be generic?

12

Local Referencing Environments

 Local variables can be stack-dynamic (bound to storage)

– Advantages

– Support for recursion

– Storage for locals is shared among some subprograms

– Disadvantages

– Allocation/de-allocation, initialization time

– Indirect addressing

– Subprograms cannot be history sensitive

 Local variables can be static

– More efficient (no indirection)

– No run-time overhead

– Cannot support recursion

13

Parameter Passing Methods

 Ways in which parameters are transmitted to and/or

from called subprograms

– Pass-by-value

– Pass-by-result

– Pass-by-value-result

– Pass-by-reference

– Pass-by-name

14

Models of Parameter Passing

15

Pass-by-Value (In Mode)

 The value of the actual parameter is used to initialize

the corresponding formal parameter

– Normally implemented by copying

– Can be implemented by transmitting an access path but not

recommended (enforcing write protection is not easy)

– When copies are used, additional storage is required

– Storage and copy operations can be costly

16

Pass-by-Result (Out Mode)

 When a parameter is passed by result, no value is

transmitted to the subprogram; the corresponding

formal parameter acts as a local variable; its value is

transmitted to caller’s actual parameter when control is

returned to the caller

– Require extra storage location and copy operation

 Potential problem: sub(p1, p1); whichever formal

parameter is copied back will represent the current

value of p1

– Example (C#)

– void Fixer (out int x, out int y) { x = 17; y = 35; }

– Fixer(out a, out a);

17

Pass-by-Value-Result (inout Mode)

 A combination of pass-by-value and pass-by-result

 Sometimes called pass-by-copy

 Formal parameters have local storage

 Disadvantages:

– Those of pass-by-result

– Those of pass-by-value

18

Pass-by-Reference (Inout Mode)

 Pass an access path

 Also called pass-by-sharing

 Passing process is efficient (no copying and no

duplicated storage)

 Disadvantages

– Slower accesses (compared to pass-by-value) to formal

parameters

– Potentials for un-wanted side effects

– Un-wanted aliases (access broadened)

19

Pass-by-Name (Inout Mode)

 By textual substitution

 Formals are bound to an access method at the time of

the call, but actual binding to a value or address takes

place at the time of a reference or assignment

 Allows flexibility in late binding

20

Implementing Parameter-Passing Methods

 In most language parameter communication takes

place thru the run-time stack

 Pass-by-reference are the simplest to implement;

only an address is placed in the stack

 A subtle but fatal error can occur with pass-by-

reference and pass-by-value-result: a formal

parameter corresponding to a constant can

mistakenly be changed

21

Parameter Passing Methods of Major Languages

 Fortran

– Always used the inout semantics model

– Before Fortran 77: pass-by-reference

– Fortran 77 and later: scalar variables are often passed by value-result

 C

– Pass-by-value

– Pass-by-reference is achieved by using pointers as parameters

 C++

– A special pointer type called reference type for pass-by-reference

 Java

– All parameters are passed are passed by value

– Object parameters are passed by reference

22

Parameter Passing Methods of Major Languages
(continued)

 Ada

– Three semantics modes of parameter transmission: in, out, in

out; in is the default mode

– Formal parameters declared out can be assigned but not referenced;

those declared in can be referenced but not assigned; in out

parameters can be referenced and assigned

 C#

– Default method: pass-by-value

– Pass-by-reference is specified by preceding both a formal parameter
and its actual parameter with ref

 PHP: very similar to C#

 Perl: all actual parameters are implicitly placed in a predefined
array named @_

23

Type Checking Parameters

 Considered very important for reliability

 FORTRAN 77 and original C: none

 Pascal, FORTRAN 90, Java, and Ada: it is always

required

 ANSI C and C++: choice is made by the user

– Prototypes

 Relatively new languages Perl, JavaScript, and

PHP do not require type checking

24

Multidimensional Arrays as Parameters

 If a multidimensional array is passed to a subprogram

and the subprogram is separately compiled, the

compiler needs to know the declared size of that array

to build the storage mapping function

25

Multidimensional Arrays as Parameters: C and C++

 Programmer is required to include the declared sizes of

all but the first subscript in the actual parameter

 Disallows writing flexible subprograms

 Solution: pass a pointer to the array and the sizes of the

dimensions as other parameters; the user must include

the storage mapping function in terms of the size

parameters

26

Multidimensional Arrays as Parameters: Pascal and
Ada

 Pascal

– Not a problem; declared size is part of the array’s type

 Ada

– Constrained arrays - like Pascal

– Unconstrained arrays - declared size is part of the object

declaration

27

Multidimensional Arrays as Parameters: Fortran

 Formal parameter that are arrays have a

declaration after the header

– For single-dimension arrays, the subscript is

irrelevant

– For multi-dimensional arrays, the subscripts allow

the storage-mapping function

28

Multidimensional Arrays as Parameters: Java and C#

 Similar to Ada

 Arrays are objects; they are all single-dimensioned,

but the elements can be arrays

 Each array inherits a named constant (length in

Java, Length in C#) that is set to the length of the

array when the array object is created

29

Design Considerations for Parameter Passing

 Two important considerations

– Efficiency

– One-way or two-way data transfer

 But the above considerations are in conflict

– Good programming suggest limited access to variables,

which means one-way whenever possible

– But pass-by-reference is more efficient to pass structures

of significant size

30

Parameters that are Subprogram Names

 It is sometimes convenient to pass subprogram names

as parameters

 Issues:

1. Are parameter types checked?

2. What is the correct referencing environment for a subprogram

that was sent as a parameter?

31

Parameters that are Subprogram Names:
Parameter Type Checking

 C and C++

– functions cannot be passed as parameters but pointers to

functions can be passed

– parameters can be type checked

 FORTRAN 95 type checks

 Later versions of Pascal and Ada does not allow

subprogram parameters; a similar alternative is

provided via Ada’s generic facility

32

Parameters that are Subprogram Names:
Referencing Environment

 Shallow binding: The environment of the call

statement that enacts the passed subprogram

 Deep binding: The environment of the definition of

the passed subprogram

 Ad hoc binding: The environment of the call

statement that passed the subprogram as an actual

parameter

33

Parameters that are Subprogram Names:
Referencing Environment (Example)

What are the outputs
from 3 different
choices?

Shallow binding?

Deep binding?

Ad hoc binding?

function sub1(){

 var x;

 function sub2() {

 alert(x); // creates a dialog box with the value of x

 }

 function sub3() {

 var x;

 x = 3;

 sub4(sub2); //????????????????????????????

 }

 function sub4(subx) {

 var x;

 x = 4;

 subx();

 }

 x = 1;

 sub3();

};

34

Overloaded Subprograms

 An overloaded subprogram is one that has the same name as

another subprogram in the same referencing environment

– Every version of an overloaded subprogram has a unique protocol

– It must be different from the others in the number, order, or types of its

parameters, or its return type if it is a function

 C++, Java, C#, and Ada include predefined overloaded

subprograms

35

Overloaded Subprograms (Continued)

 In Ada, the return type of an overloaded function can be used to

disambiguate calls (thus two overloaded functions can have the

same parameters)

 A, B: Integer; // Two functions named Fun, both takes integer parameter

 A := B + Fun(7); // but one returns Integer and the other returns float

 // Is it working in C++ also?

 Ada, Java, C++, and C# allow users to write multiple versions of

subprograms with the same name

36

Generic Subprograms

 A generic or polymorphic subprogram takes

parameters of different types on different activations

 Overloaded subprograms provide ad hoc

polymorphism

 A subprogram that takes a generic parameter that is

used in a type expression that describes the type of

the parameters of the subprogram provides

parametric polymorphism

37

Examples of parametric polymorphism: C++

template <class Type>

Type max(Type first, Type second) {

 return first > second ? first : second;

}

 The above template can be instantiated for any type for which

operator > is defined

int max (int first, int second) {

 return first > second? first : second;

}

38

Design Issues for Functions

 Are side effects allowed?

– Parameters should always be in-mode to reduce side effect

(like Ada)

 What types of return values are allowed?

– Most imperative languages restrict the return types

– C allows any type except arrays and functions

– C++ is like C but also allows user-defined types

– Ada allows any type

– Java and C# do not have functions but methods can have any

type

39

User-Defined Overloaded Operators

 Operators can be overloaded in Ada and C++

 An Ada example

Function “*”(A,B: in Vec_Type): return Integer is

 Sum: Integer := 0;

 begin

 for Index in A’range loop

 Sum := Sum + A(Index) * B(Index)

 end loop

 return sum;

end “*”;

…

c = a * b; -- a, b, and c are of type Vec_Type

40

Coroutines

 A coroutine is a subprogram that has multiple entries and controls

them itself

 Also called symmetric control: caller and called coroutines are on a

more equal basis

 A coroutine call is named a resume

41

Coroutines (Continued)

 The first resume of a coroutine is to its beginning, but subsequent

calls enter at the point just after the last executed statement in the

coroutine

 Coroutines repeatedly resume each other, possibly forever

 Coroutines provide quasi-concurrent execution of program units

(the coroutines); their execution is interleaved, but not overlapped

42

Coroutines Illustrated: Possible Execution Controls

43

Coroutines Illustrated: Possible Execution Controls
(Continued)

44

Coroutines Illustrated: Possible Execution Controls
with Loops

45

Summary

 A subprogram definition describes the actions represented by

the subprogram

 Subprograms can be either functions or procedures

 Local variables in subprograms can be stack-dynamic or static

 Three models of parameter passing: in mode, out mode, and

inout mode

 Some languages allow operator overloading

 Subprograms can be generic

 A coroutine is a special subprogram with multiple entries

46

Homework #7

 Problem Solving (P. 445 of class textbook)

– 2, 5, 7

 Due date: One week from assigned date

– Please hand in printed (typed) form
– I do not accept any handwritten assignment

– Exception: pictures

