

1

Programming Languages:

Lecture 7

Chapter 7: Expressions and Assignment

Statements

Jinwoo Kim
jwkim@jjay.cuny.edu

2

Chapter 7 Topics

 Introduction

 Arithmetic Expressions

 Overloaded Operators

 Type Conversions

 Relational and Boolean Expressions

 Short-Circuit Evaluation

 Assignment Statements

 Mixed-Mode Assignment

3

Introduction

 Expressions are the fundamental means of

specifying computations in a programming

language

 To understand expression evaluation, need to be

familiar with the orders of operator and operand

evaluation

 Essence of imperative languages is dominant role

of assignment statements

4

Arithmetic Expressions

 Arithmetic evaluation was one of the motivations for

the development of the first programming

languages

 Arithmetic expressions consist of operators,

operands, parentheses, and function calls

5

Arithmetic Expressions: Design Issues

 Design issues for arithmetic expressions

– operator precedence rules

– operator associativity rules

– order of operand evaluation

– operand evaluation side effects

– operator overloading

– mode mixing expressions

6

Arithmetic Expressions: Operators

 A unary operator has one operand

 A binary operator has two operands

 A ternary operator has three operands

7

Arithmetic Expressions: Operator Precedence Rules

 The operator precedence rules for expression

evaluation define the order in which “adjacent”

operators of different precedence levels are

evaluated

– E.g. a + b * c (when a = 3, b = 4, c = 5)

 Typical precedence levels

– parentheses

– unary operators

– ** (if the language supports it)

– *, /

– +, -

8

Arithmetic Expressions: Operator Associativity Rule

 The operator associativity rules for expression evaluation

define the order in which adjacent operators with the same

precedence level are evaluated

– E.g. a – b + c - d

 Typical associativity rules

– Left to right, except **, which is right to left

– E.g. a ** b ** c

– Fortran and Ada handle above expression differently

 APL is different

– all operators have equal precedence and all operators associate

right to left

 Precedence and associativity rules can be overridden with

parentheses

9

Arithmetic Expressions: Parentheses

 Programmers can alter the precedence and associativity rules

by placing parentheses in expressions

– E.g. (a + b) * c

 Languages that allow parentheses in arithmetic expressions

could dispense with all precedence rules and simply associate

all operators either left to right or right to left

– The programmer can specify desired order of evaluation with

parentheses

– Advantage: Simple, now programmer does not need to

remember any precedence or associative rules

– APL follows this approach

– E.g. A x B + C

– Disadvantage: Can makes writing expressions more tedious

which can also yields readability problems

10

Arithmetic Expressions: Conditional Expressions

 Conditional Expressions

– Expression1 ? Expression2 : expression3

– C-based languages (e.g., C, C++)

– An example:

 average = (count == 0)? 0 : sum / count

– Evaluates as if written like

 if (count == 0)

 average = 0;

 else

 average = sum / count;

11

Arithmetic Expressions: Operand Evaluation Order

 Operand evaluation order

1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory; sometimes

the constant is in the machine language instruction

3. Parenthesized expressions: evaluate all operands and

operators first

 Operand evaluation order becomes interesting

when it does have side effects

12

Arithmetic Expressions: Potentials for Side Effects

 Functional side effects: when a function changes a two-way

parameter or a non-local variable

 Problem with functional side effects:

– When a function referenced in an expression alters another

operand of the expression

– e.g., function changes a global variable:

 int a = 10;

 int fun1(){

 a = 20;

 return 3;

 }

 int fun2(){

 a = a + fun1();

 }

 void main(){

 fun2();

 }

13

Functional Side Effects

 Two possible solutions to the problem

1. Write the language definition to disallow functional side

effects

– No two-way parameters in functions

– No non-local references in functions

– Advantage: it works!

– Disadvantage: inflexibility of two-way parameters and non-local

references

2. Write the language definition to demand that operand

evaluation order be fixed

– Disadvantage: limits some compiler optimizations

14

Overloaded Operators

 Use of an operator for more than one purpose is

called operator overloading

 Some are common (e.g., + for int and float)

 Some are potential trouble (e.g., & in C and C++)

– Loss of compiler error detection (omission of an operand

should be a detectable error)

– Some loss of readability

– Can be avoided by introduction of new symbols

– e.g., Pascal’s div for integer division

– avg := sum / count (floating point division in Pascal)

– avg = sum / count (integer division in C or C++ if sum and count are

integer type)

15

Overloaded Operators (continued)

 C++ and Ada allow user-defined overloaded

operators

– Exceptions: . ::

 Potential problems:

– Users can define nonsense operations

– E.g. User can define + to multiply

– Readability may suffer, even when the operators make

sense

– E.g. Seeing an * operator in a program, the reader must find both

the types of the operands and the definition of the operators to

determine its meaning

16

Type Conversions

 A narrowing conversion is one that converts an

object to a type that cannot include all of the values

of the original type

– e.g., float to int

 A widening conversion is one in which an object is

converted to a type that can include at least

approximations to all of the values of the original

type

– e.g., int to float

– Usually safe but may result in certain problem

17

Implicit Type Conversions

 A mixed-mode expression is one that has operands of

different types

 A coercion is an implicit type conversion

– Initiated by compiler

– Gives flexibility to the language

 Disadvantage of coercions:

– Reliability: They decrease in the type error detection ability of the

compiler

18

Implicit Type Conversions (Continued)

 In most languages, all numeric types are coerced in

expressions, using widening conversions

 In Ada, there are virtually no coercions in expressions

– Does not usually allow operand type mixing

19

Explicit Type Conversions

 Explicit Type Conversions

– Type conversion explicitly requested by programmer

 Called casting in C-based language

 Examples

– C: (int) angle

– Ada: Float (sum)

 Note that Ada’s syntax is similar to function calls

20

Type Conversions: Errors in Expressions

 Causes

– Inherent limitations of arithmetic

– e.g., division by zero

– Limitations of computer arithmetic

– e.g. overflow or underflow

 Often ignored by the run-time system or

sometimes calls error handling routine called

“exceptions”

21

Relational and Boolean Expressions

 Relational Expressions

– Use relational operators and operands of various types

– Typical types for relational operators: numeric, string, ordinal

types

– Evaluate to some Boolean representation

– Operator symbols used vary somewhat among languages
(!=, /=, .NE. <>)

22

Relational and Boolean Expressions

 Boolean Expressions

– Operands are Boolean and the result is Boolean

– Example operators

FORTRAN 77 FORTRAN 90 C Ada

 .AND. and && and

 .OR. or || or

 .NOT. not ! not

 xor

23

Relational and Boolean Expressions: No Boolean Type in C

 C has no Boolean type

– It uses int type with 0 for false and nonzero for true

 One odd characteristic of C’s expressions:

 a > b > c is a legal expression, but the result is

not what you might expect:

– Left operator is evaluated, producing 0 or 1

– The evaluation result is then compared with the third
operand (i.e., c)

24

Relational and Boolean Expressions: Operator Precedence

 Precedence of C-based operators

postfix ++, --

unary +, -, prefix ++, --, !

*,/,%

binary +, -

<, >, <=, >=

==, !=

&&

||

25

Short Circuit Evaluation

 An expression in which the result is determined without
evaluating all of the operands and/or operators

 Example: (13*a) * (b/13–1)

If a is zero, there is no need to evaluate (b/13-1)

But unlike Boolean expression, it is not easy to detect

shortcut in arithmetic expression

 Better Example: (a >= 0) && (b < 10)

This shortcut can be easily discovered during execution

 Problem with non-short-circuit evaluation
index = 0;

while (index <= length) && (LIST[index] != value)

 index++;

– When index=length, LIST [index] will cause an indexing problem
(assuming LIST has length -1 elements)

26

Short Circuit Evaluation (continued)

 C, C++, and Java: use short-circuit evaluation for the usual
Boolean operators (&& and ||), but also provide bitwise

Boolean operators that are not short circuit (& and |)

 Ada: programmer can specify either (short-circuit is specified
with and then and or else)

 Short-circuit evaluation exposes the potential problem of side

effects in expressions

– e.g. (a > b) || (b++ / 3)

27

Assignment Statements

 The general syntax
<target_var> <assign_operator> <expression>

 The assignment operator

= FORTRAN, BASIC, PL/I, C, C++, Java

:= ALGOLs, Pascal, Ada

 = can be bad when it is overloaded for the
relational operator for equality

28

Assignment Statements: Conditional Targets

 Conditional targets (C, C++, and Java)
(flag)? total : subtotal = 0

Which is equivalent to

if (flag)

 total = 0

else

 subtotal = 0

29

Assignment Statements: Compound Operators

 A shorthand method of specifying a commonly

needed form of assignment

– Destination variable also appear as the first operand in the

expression on the right side

 Introduced in ALGOL; adopted by C

 Example
a = a + b

is written as

a += b

30

Assignment Statements: Unary Assignment Operators

 Unary assignment operators in C-based languages

combine increment and decrement operations with

assignment

 Examples

sum = ++count (count incremented, assigned to sum)

sum = count++ (count assigned to sum, incremented)

count++ (count incremented)

-count++ (count incremented then negated)

31

Assignment as an Expression

 In C, C++, and Java, the assignment statement

produces a result and can be used as operands

 An example:

 while ((ch = getchar())!= EOF){…}

 ch = getchar() is carried out; the result (assigned

to ch) is used as a conditional value for the while

statement

32

Mixed-Mode Assignment

 Assignment statements can also be mixed-mode, for

example

int a, b;

float c;

c = a / b;

 In Fortran and C-based languages, coercion is freely

allowed

– E.g., int to float or float to int

 In C# and Java, only widening assignment coercions

are done

 In Ada, there is no assignment coercion

33

Summary

 Expressions

 Operator precedence and associativity

 Operator overloading

 Mixed-type expressions

 Various forms of assignment

34

Homework #3 (part 3)

 Problem Solving (P. 345 of class textbook)

– 8,13

 Due date: One week from assigned date

– Please hand in printed (typed) form

– I do not accept any handwritten assignment

– Exception: pictures

