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Introduction 

 Expressions are the fundamental means of 

specifying computations in a programming 

language 

 

 To understand expression evaluation, need to be 

familiar with the orders of operator and operand 

evaluation 

 

 Essence of imperative languages is dominant role 

of assignment statements 
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Arithmetic Expressions 

 Arithmetic evaluation was one of the motivations for 

the development of the first programming 

languages 

 

 Arithmetic expressions consist of operators, 

operands, parentheses, and function calls 
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Arithmetic Expressions: Design Issues 

 Design issues for arithmetic expressions 

– operator precedence rules 

– operator associativity rules 

– order of operand evaluation 

– operand evaluation side effects 

– operator overloading 

– mode mixing expressions 
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Arithmetic Expressions: Operators 

 A unary operator has one operand 

 

 A binary operator has two operands 

 

 A ternary operator has three operands 
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Arithmetic Expressions: Operator Precedence Rules 

 The operator precedence rules for expression 

evaluation define the order in which “adjacent” 

operators of different precedence levels are 

evaluated  

– E.g. a + b * c (when a = 3, b = 4, c = 5) 

 

 Typical precedence levels 

–  parentheses 

–  unary operators 

–  ** (if the language supports it) 

–  *, / 

–  +, - 
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Arithmetic Expressions: Operator Associativity Rule 

 The operator associativity rules for expression evaluation 

define the order in which adjacent operators with the same 

precedence level are evaluated 

– E.g. a – b + c - d 

 

 Typical associativity rules 

– Left to right, except **, which is right to left 

– E.g. a ** b ** c  

– Fortran and Ada handle above expression differently 

 

 APL is different 

– all operators have equal precedence and all operators associate 

right to left 

 

 Precedence and associativity rules can be overridden with 

parentheses 
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Arithmetic Expressions: Parentheses 

 Programmers can alter the precedence and associativity rules 

by placing parentheses in expressions 

– E.g. (a + b) * c 

 

 Languages that allow parentheses in arithmetic expressions 

could dispense with all precedence rules and simply associate 

all operators either left to right or right to left 

– The programmer can specify desired order of evaluation with 

parentheses 

– Advantage: Simple, now programmer does not need to 

remember any precedence or associative rules 

– APL follows this approach 

– E.g. A x B + C 

– Disadvantage: Can makes writing expressions more tedious 

which can also yields readability problems 

 

 



   

10 

Arithmetic Expressions: Conditional Expressions 

 Conditional Expressions 

– Expression1 ? Expression2 : expression3 

– C-based languages (e.g., C, C++) 

– An example: 

  average = (count == 0)? 0 : sum / count 

– Evaluates as if written like 

  if (count == 0)  

     average = 0; 

  else  

     average = sum / count; 
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Arithmetic Expressions: Operand Evaluation Order 

 Operand evaluation order 

1. Variables: fetch the value from memory 

2. Constants: sometimes a fetch from memory; sometimes 

the constant is in the machine language instruction 

3. Parenthesized expressions: evaluate all operands and 

operators first 

 

 Operand evaluation order becomes interesting 

when it does have side effects 
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Arithmetic Expressions: Potentials for Side Effects 

 Functional side effects: when a function changes a two-way 

parameter or a non-local variable 

 

 Problem with functional side effects:  

– When a function referenced in an expression alters another 

operand of the expression 

– e.g., function changes a global variable:  

           int a = 10; 
 

         int fun1(){ 

     a = 20; 

           return 3; 

         } 

 

         int fun2(){ 

     a = a + fun1(); 

         } 

 

         void main(){ 

     fun2(); 

         } 

 

      



   

13 

Functional Side Effects 

 Two possible solutions to the problem 

1. Write the language definition to disallow functional side 

effects 

– No two-way parameters in functions 

– No non-local references in functions 

– Advantage: it works! 

– Disadvantage: inflexibility of two-way parameters and non-local 

references 

2. Write the language definition to demand that operand 

evaluation order be fixed 

– Disadvantage: limits some compiler optimizations 
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Overloaded Operators 

 Use of an operator for more than one purpose is 

called operator overloading 

 

 Some are common (e.g., + for int and float) 

 

 Some are potential trouble (e.g., &  in C and C++) 

– Loss of compiler error detection (omission of an operand 

should be a detectable error) 

– Some loss of readability 

– Can be avoided by introduction of new symbols  

– e.g., Pascal’s div for integer division 

– avg := sum / count (floating point division in Pascal) 

– avg = sum / count (integer division in C or C++ if sum and count are 

integer type) 
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Overloaded Operators (continued) 

 C++ and Ada allow user-defined overloaded 

operators 

– Exceptions: . :: 

 

 Potential problems:  

– Users can define nonsense operations 

– E.g. User can define + to multiply 

– Readability may suffer, even when the operators make 

sense 

– E.g. Seeing an * operator in a program, the reader must find both 

the types of the operands and the definition of the operators to 

determine its meaning 
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Type Conversions 

 A narrowing conversion is one that converts an 

object to a type that cannot include all of the values 

of the original type  

– e.g., float to int 

 

 A widening conversion is one in which an object is 

converted to a type that can include at least 

approximations to all of the values of the original 

type                            

– e.g., int to float 

– Usually safe but may result in certain problem 
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Implicit Type Conversions 

 A mixed-mode expression is one that has operands of 

different types 

 

 A coercion is an implicit type conversion 

– Initiated by compiler 

– Gives flexibility to the language 

 

 Disadvantage of coercions: 

– Reliability: They decrease in the type error detection ability of the 

compiler  
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Implicit Type Conversions (Continued) 

 

 In most languages, all numeric types are coerced in 

expressions, using widening conversions 

 

 In Ada, there are virtually no coercions in expressions 

– Does not usually allow operand type mixing 
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Explicit Type Conversions 

 Explicit Type Conversions 

– Type conversion explicitly requested by programmer 

 

 Called casting in C-based language 

 

 Examples 

– C: (int) angle 

– Ada: Float (sum) 

 

 Note that Ada’s syntax is similar to function calls 
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Type Conversions: Errors in Expressions 

 Causes 

– Inherent limitations of arithmetic                          

– e.g., division by zero 

– Limitations of computer arithmetic                     

–  e.g. overflow or underflow 

 

  Often ignored by the run-time system or 

sometimes calls error handling routine called 

“exceptions” 
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Relational and Boolean Expressions 

 Relational Expressions 

– Use relational operators and operands of various types 

– Typical types for relational operators: numeric, string, ordinal 

types 

– Evaluate to some Boolean representation 

– Operator symbols used vary somewhat among languages 
(!=, /=, .NE. <>) 
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Relational and Boolean Expressions 

 Boolean Expressions 

– Operands are Boolean and the result is Boolean 

– Example operators 

 

FORTRAN 77    FORTRAN 90    C        Ada 

    .AND.      and      &&   and 

  .OR.       or       ||   or 

  .NOT.      not       !   not 

                           xor 
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Relational and Boolean Expressions: No Boolean Type in C 

 C has no Boolean type 

– It uses int type with 0 for false and nonzero for true 

 

 One odd characteristic of C’s expressions:   

     a > b > c  is a legal expression, but the result is 

not what you might expect: 

– Left operator is evaluated, producing 0 or 1 

– The evaluation result is then compared with the third 
operand (i.e., c) 
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Relational and Boolean Expressions: Operator Precedence 

 Precedence of C-based operators 

postfix ++, -- 

unary +, -, prefix ++, --, ! 

*,/,%  

binary +, - 

<, >, <=, >= 

==, != 

&& 

||                     
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Short Circuit Evaluation 

 An expression in which the result is determined without 
evaluating all of the operands and/or operators 

 

 Example: (13*a) * (b/13–1) 

If a is zero, there is no need to evaluate (b/13-1)  

But unlike Boolean expression, it is not easy to detect 

shortcut in arithmetic expression 

 

 Better Example: (a >= 0) && (b < 10) 

This shortcut can be easily discovered during execution 

 

 Problem with non-short-circuit evaluation 
index = 0; 

while (index <= length) && (LIST[index] != value) 

     index++; 

– When index=length, LIST [index] will cause an indexing problem 
(assuming LIST has length -1 elements) 
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Short Circuit Evaluation (continued) 

 C, C++, and Java: use short-circuit evaluation for the usual 
Boolean operators (&& and ||), but also provide bitwise 

Boolean operators that are not short circuit (& and |) 

 

 Ada: programmer can specify either (short-circuit is specified 
with and then and or else) 

 

 Short-circuit evaluation exposes the potential problem of side 

effects in expressions                

– e.g. (a > b) || (b++ / 3) 
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Assignment Statements 

 The general syntax 
<target_var> <assign_operator> <expression> 

 

 The assignment operator 

=   FORTRAN, BASIC, PL/I, C, C++, Java 

:=  ALGOLs, Pascal, Ada 

 

 =  can be bad when it is overloaded for the 
relational operator for equality 
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Assignment Statements: Conditional Targets 

 Conditional targets (C, C++, and Java) 
(flag)? total : subtotal = 0 

 

Which is equivalent to 

 

if (flag) 

 total = 0 

else 

 subtotal = 0 
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Assignment Statements: Compound Operators 

 A shorthand method of specifying a commonly 

needed form of assignment 

– Destination variable also appear as the first operand in the 

expression on the right side 

 

 Introduced in ALGOL; adopted by C 

 

 Example 
a = a + b 

 

is written as 

 

a += b 

 



   

30 

Assignment Statements: Unary Assignment Operators 

 Unary assignment operators in C-based languages 

combine increment and decrement operations with 

assignment 

 

 Examples 

sum = ++count (count incremented, assigned to sum) 

sum = count++ (count assigned to sum, incremented) 

count++ (count incremented) 

-count++ (count incremented then negated) 
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Assignment as an Expression 

 In C, C++, and Java, the assignment statement 

produces a result and can be used as operands 

 

 An example: 

  while ((ch = getchar())!= EOF){…} 

 

 ch = getchar() is carried out; the result (assigned 

to ch) is used as a conditional value for the while 

statement 
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Mixed-Mode Assignment 

 Assignment statements can also be mixed-mode, for 

example 

int a, b; 

float c; 

c = a / b; 

 

 In Fortran and C-based languages, coercion is freely 

allowed 

– E.g., int to float or float to int 

 In C# and Java, only widening assignment coercions 

are done 

 In Ada, there is no assignment coercion 
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Summary 

 Expressions 

 Operator precedence and associativity 

 Operator overloading 

 Mixed-type expressions 

 Various forms of assignment 
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Homework #3 (part 3) 

 

 Problem Solving (P. 345 of class textbook) 

– 8,13 

 

 Due date: One week from assigned date 

– Please hand in printed (typed) form 

– I do not accept any handwritten assignment 

– Exception: pictures 

 
 

 

 


