
Programming Languages:

Lecture 4

Perl Programming Language

Jinwoo Kim
jwkim@jjay.cuny.edu

1

mailto:jwkim@jjay.cuny.edu

2
Scripting Languages & Perl Programming

• Perl (Practical Extraction and Report Language) is a
powerful and adaptable scripting language
– Become very popular in early 90’s as web became a reality

– Good for processing web pages containing tags of different types
(image tags, url tags etc)

– These tags or substrings can be extracted using Perl commands
– Ideal for managing web applications, such as passwd authentication,

database access, network access, and multiplatform
– good for working with html web forms, obtaining user inputs, enabling

cookies and tracking clicks and access counters, connecting to mail
servers, integrating with html, remote file management via the web,
creating dynamic images among many other capabilities capabilities

– Perl is ideal for processing text files containing strings

2

3
Scripting Languages & Perl Programming

• What is Perl?
– Strings, literals and variables

– Perl strings (sequence of characters) can be surrounded by single
quotes or double quotes

– Perl has three types of variables - scalars (strings or numeric’s), arrays
and hashes

– Scalars, arrays and hashes
– A scalar in perl is either a numeric (103, 45.67) or a string

– $s1 = “hello”; $s2 = “world”; $s3 = $s1.$s2;
– Array in perl is defined as a list of scalars

– @array =(10,12,45);

– Operators
– Substitutions
– Control Statements
– Sorting, Shifting

3

4
Larry Wall on Perl

• ``The Perl slogan is, `There is more than one way to

do it.' People have often taken that to mean that there

is more than one way to do it within Perl. But I apply

the same thing outside of Perl also. I know a lot of

people use Perl for what it's useful for. But I don't

expect to take themselves off to a monastery and just

write Perl scripts all day.‘’

4

5
Larry Wall on Perl Competitors

• Wall says Perl's biggest competitors -- REXX, Tcl,

Python, and Scheme – are useful for similar things

(that Perl is). Although he prefers Perl because of it's

efficiency, language structure, and lack of theoretical

axes, Wall says he will not engage in language wars.

``I have a firm policy against making enemies,'' he

states.

5

6
Resources For Perl

• Books:
– Learning Perl

– By Larry Wall
– Published by O'Reilly

• Programming Perl
– By Larry Wall,Tom Christiansen and Jon Orwant
– Published by O'Reilly

• Web Site
– http://safari.oreilly.com

– Contains both Learning Perl and Programming Perl in ebook form

6

http://safari.oreilly.com/

7
Web Sources for Perl Code/Info

• Class homepage

• www.perl.com

• www.perldoc.perl.com

• www.perl.org

• www.perlmonks.org

• www.activestate.com
7

http://www.perl.com/
http://www.perldoc.perl.com/
http://www.perl.org/
http://www.perlmonks.org/
http://www.activestate.com/

8
A simple Perl Script (run this on your machine)

#!/usr/bin/perl
print “what is your name? “;
chomp($name = <STDIN>); # Program waits for user input from keyboard
print “Welcome, $name, are your ready to learn Perl now? “;
chomp($response = <STDIN>);
$response=lc($response); # response is converted to lowercase
if ($response eq “yes” or $response eq “y”){

print “Great! Let’s get started learning Perl by example.\n”;
}
else {

print “O.K. Try again later.\n”;
}
$now = localtime; # Use a Perl function to get the date and time
print “$name, you ran this script on $now.\n”;

8

9
The Script File

• A Perl script is created in a text editor

• Normally, there is no special extension required in the
file name, unless specified by the application running the
script
– E.g., If running under Apache as a cgi program, the file name

may be required to have a .pl or .cgi extension

9

10
Running the Script File

• Perl programs are not compiled but interpreted
– Perl interpreter in your unix system can be found by typing
– where perl
– It may show

– /usr/local/bin/perl
– /usr/bin/perl

– giving the path of the perl interpreter
– Perl interpreter is used to run perl programs

– #!/usr/local/bin/perl
– print "Hello World\n";

– perl hello.pl (Assuming above is in a file called hello.pl)

– chmod +x hello.pl
– ./hello.pl

10

11
Free Form

• A Perl is a free-form language

• Statement must be terminated with a semicolon but can
be anywhere on the line and span multiple lines

11

12
Comments

• Perl comments are preceded by a # sign

• They are ignored by the interpreter

• They can be anywhere on the line and span one line

print “Hello, world “; # this is a comment
And this is a comment

12

13
Printing Output

• The print and printf functions are built-in functions used
to display output
– The print function arguments consist of a comma-seperated list

of strings and/or numbers
– The printf function is similar to the C printf() function and is used

for formatting output
– Parentheses are not required around the argument list

print “Hello, world\n “;
print “Hello, “, “ world\n”;
print (“Its such a perfect day!\n”); # Parens optional
print “The date and time are: “, localtime(), “\n”;
printf(“Meet %s: Age %5d : Salary \$%10.2f\n”, “John”, 40, 55000);
$string = sprintf(“The name is: %10s\nThe number is: %8.2f\n”, “Ellie”, 33);
print $string # sprintf allows you to assign the formatted string to a variable

13

14
Numeric Literals

• 6 Integer

• 12.6 Floating Point

• 1e10 Scientific Notation

• 6.4E-33 Scientific Notation

• 4_348_348 Underscores instead of commas for
long numbers

14

15
String Literals

• “There is more than on way to do it!”
• 'Just don't create a file called -rf.'
• “Beauty?\nWhat's that?\n”
• “”
• “Real programmers can write assembly in any

language.”

Quotes from Larry Wall

15

16
Data Types/ Variables

• Perl supports three basic data types to hold variables:
scalars, arrays, and associative arrays (hashes)

• Perl variables don’t have to be declared before being
used

• Variable names start with a “funny character”, followed
by a letter and any number of alphanumeric characters,
including underscore
– The funny character ($, @, %) represents the data type and

context
– The characters following the funny symbol are case sensitive

16

17
Categories of Variables (Scalar)

• Scalar variable holds a single value, single string, or a
number
– The name of scalar is preceded by a “$” sign
– $first_name = “Melanie”;
– $last_name = “Smith”;
– $salary = 125000.00;
– print $first_name, $last_name, $salary;

17

18
Categories of Variables (Array)

• Array variable: ordered list of scalars (i.e., strings and
numbers)
– The elements of the array are indexed by integers starting at 0
– The name of the array is preceded by an “@” sign
– @names = (“Jessica”, “Michelle”, “Linda”);
– # Prints the array with elements separated by a space
– print “@names”;
– print “$names[0] and $names[2]”; # Prints Jessica and Linda
– print “$names[-1]\n”;
– $names[3] = “Nicole”; # Assign a new value as the 4th element
– Some commonly used built-in functions

– pop, push, shift, unshift, splice, sort

18

19
Categories of Variables (Hash)

• Hash variable : Unordered list of key/value pairs, indexed
by string (key)
– The name of the hash is preceded by a “%” symbol
– %employee = (
–
–
–

“Name” => “Jessica Savage”,
“Phone” => “(925) 555 -1234,
“Position” => “CEO”

–);
– print “$employee{“Name”}; #print a value
– $employedd{“SSN”} = “999-333-1234”; # Assign a key/value
– Some commonly used built-in functions

– keys, values, each, delete

19

20
Perl Variable Characteristics

• Variables do not need to be declared

• Variable type (int, char, ...) is decided at run time
– $a = 5;
– $a = “perl”;

now an integer
now a string

20

21
Operators on Scalar Variables

• Numeric and Logic Operators
– Typical : +, -, *, /, %, ++, --, +=, -=, *=, /=, ||, &&, ! etc…
– Not typical: ** for exponentiation

• String Operators
– Concatenation: “.” - similar to strcat in C

– $first_name = “Larry”;
– $last_name = “Wall”;
– $full_name = $first_name . “ “ . $last_name;

21

22
Equality Operators for Strings

• Equality/ Inequality : eq and ne
– $language = “Perl”;
– if ($language == “Perl”) ...
– if ($language eq “Perl”) ...

Assignment
Wrong!
Correct

• Use eq / ne rather than == / != for strings

22

23
Relational Operators for Strings

• Greater than
– Numeric : > String : gt

• Greater than or equal to
String : ge– Numeric : >=

• Less than
– Numeric : < String : lt

• Less than or equal to
– Numeric : <= String : le

23

24
Comparison Operators

24

25
Operator Precedence and Associativity

25

26
String Functions

• Convert to upper case
– $name = uc($name);

• Convert only the first char to upper case
– $name = ucfirst($name);

• Convert to lower case
– $name = lc($name);

• Convert only the first char to lower case
– $name = lcfirst($name);

26

27
Variables

• Perl has three types of variables - scalars (strings or
numeric’s), arrays and hashes
– $x = 45.67; $var = ‘cost’; print “$var is $x”;
– @A = (‘guna’, ‘me’, ‘cmu’, ‘pgh’); $i = 1; $A[$i] = ‘guna’;

• With $#A, we can find
– length of an array A

– $len = $#A + 1
– $len = @A;

– resize an array
– @array = (10,12,45);
– $#array = 1;
– Will result in an array of size ???

27

28
Variable Substitution

• Variables inside strings are replaced with their value
– $stooge = “Larry”
– print “$stooge is one of the three stooges.\n”;

Produces the output:
– Larry is one of the three stooges.

• With single quotes – no substitution
– print '$stooge is one of the three stooges.\n’;

Produces the output:
– $stooge is one of the three stooges.\n

28

29
Character Escapes

• List of character escapes that are recognized when using
double quoted strings
– \n newline
– \t tab
– \r carriage return

• Common Example :
– print “Hello\n”;
– # prints Hello and then a return

29

30Numbers and Strings are
Interchangeable!

• If a scalar variable looks like a number and Perl needs a
number, it will use the variable as a number!
– $a = 4;
– print $a + 18;
– $b = “50”;
– print $b – 10;

a number
prints 22
looks like a string, but ...
will print ???

30

31
if ... else ... statements

• Similar to C/C++ - except that scope braces are
REQUIRED!!
– if ($os eq “Linux”) {
– print “Sweet!\n”;
– }
– elsif ($os eq “Windows”) { # no e!!!
– print “Time to move to Linux, buddy!\n”;
– }
– else {
– print “Hmm...!\n”;
– }

31

32
unless ... else Statements

• Unless Statements are the opposite of if ...else
statements.
– unless ($os eq “Linux”) {
– print “Time to move to Linux, buddy!\n”;
– }
– else {
– print “Sweet!\n”;
– }

• And again remember the braces are required!

32

33
while Loop

• While loop: Similar to C/C++ but again the braces are
required!!

• Example :
– $i = 0;
– while ($i <= 1000) {
– print “$i\n”;
– $i++;
– }

33

34
until Loop

• The until function evaluates an expression repeatedly
until a specific condition is met

• Example:
– $i = 0;
– until ($i == 1000) {
– print “$i\n”;
– $i++;
– }

34

35
for Loops

• Like C/C++
– for ($i = 0; $i <= 1000; $i++) {
– print “$i\n”;
– }

• Another way to create a for loop
– for $i (0..1000) {
– print “$i\n”;
– }

35

36
Control Inside a Loop

• Where you would use continue in C, use next

• Where you would use break in C, use last

• What is the output for the following?
– for ($i = 0; $i < 10; $i++) {
– if ($i == 1 || $i == 3)
– { next; }
– if($i == 5) { last; }
– print “$i\n”;
– }

36

37
Control Structures (Loops and Conditionals)

37

38
What would be the output of the below code?

38

39
bubble sort on an array of strings

39

40
Arrays

• Array variable - denoted by @
– @names = (“Larry”, “Curly”, “Moe”);

• To access array, use array variable
– print @names;
– print “@names”;

prints :???
prints :???

• You do not need to loop through the array to print it –
Perl does this for you
– print “The elements of \@names are @names\n”;

40

41
Array Elements

• To access one element of the array : use $

• Why? Because every element in the array is scalar
– print “$names[0]\n”; # prints : Larry

• What happens if we access $names[3] ?

41

42
Array Elements (Continued)

• The index of the last element in the array
– print $#names; # prints 2 in the previous example

• Find the number of elements in the array:
– $array_si ze = @names;

– $array_size now has 3 in the above example because there are 3
elements in the array

42

43
Array Elements (Continued)

print "Enter the number of the element you wish to view :";

chomp ($x=<STDIN>);

@names=("Muriel","Gavin","Susanne","Sarah","Anna","Paul","Simon");

print "The first two elements are @names[0,1]\n";

print "The first three elements are @names[0..2]\n";

print "You requested element $x who is $names[$x-1]\n"; # starts at 0

print "The elements before and after are : @names[$x-2,$x]\n";

print "The first, second, third and fifth elements are @names[0..2,4]\n";

print "a) The last element is $names[$#names]\n";

print "b) The last element is @names[-1]\n";
one way

different way

43

44
Array Elements (Continued)

• The two variables $myvar and @myvar are not, in any
way, related
– $myvar="scalar variable";
– @myvar=("one“, "element“, "of“, "an“, "array“, "called“, "myvar");
– print $myvar;

– print $myvar[1];

– print @myvar;

refers to the contents of a scalar variable
called myvar
refers to the second element of the array
myvar
refers to all the elements of array myvar

44

45
Changing & Adding Array Elements

• Access an array element and assign it as a new value
– @browser = ("NS", "IE", "Opera");
– $browser[2]="Mosaic";
– # This changes the value of the element with the third list

element

• We can add a new element in the last position by just
assigning the next position a value
– @browser = ("NS", "IE", "Opera");
– $browser[3]="Mosaic";

45

46
Splice Function

• Using the splice function, you can delete or replace
elements within the array
– @browser = ("NS", "IE", "Opera");
– splice(@browser, 1, 1);

– argument of splice function: name of the array you want to splice, list
number of the element where you wish to start the splice (starts
counting at zero), number of elements you wish to splice.

• If you want to delete more than one element, change that
third number to the number of elements you wish to
delete
– @browser = ("NS", "IE", "Opera");
– splice(@browser, 0, 2);

46

47
Splice Function (Continued)

• You can also use splice to replace elements
– @browser = ("NS", "IE", "Opera");
– splice(@browser, 1, 2, "NeoPlanet", "Mosaic");

– You just need to list your replacement elements after your other three
arguments within the splice function

• If you put the third parameter as 0, you simply add items
– @new_browser = (“X0”, “X1”, “X2”, X3”, “X4”);
– splice(@browser, 1, 0, @new_browser[1..3]);

47

48
Splice Function (Continued)

• Splice returns the elements removed from the array
– @browser = ("NS", "IE", "Opera");
– @dwarfs = qw(Doc Grumpy Happy Sleepy Sneezy);
– @who = splice(@dwarfs, 3, 2, "NeoPlanet", "Mosaic");
– print “@who\n”;

– $who2 = splice(@dwarfs, 3, 2, "NeoPlanet", "Mosaic");
– print “Swho2\n”;

48

49
Splice Function (Continued)

• Both the offset and the length can be negative numbers
(count from end of array)
– @browser = ("NS", "IE", "Opera“, “Safari”);
– @new = splice(@ browser, 1, -1);
– print “@new\n”;
– @browser = ("NS", "IE", "Opera“, “Safari”);
– @new = splice(@ browser, -3, 2);
– print “@new\n”;

49

50
Splice Function (Continued)

• Can you see the difference between following codes?

@fruits = (“apples”, “bananas”, “tomatoes”, “pineapples”);

$fruits[1] = “”;

splice (@fruits, 1, 1);

50

51
Unshift/Shift

• To add an element to the left side, you would use the
unshift function
– @browser = ("NS", "IE", "Opera");
– unshift(@browser, "Mosaic");

• To delete an element from the left side, you would use
the shift function
– @browser = ("NS", "IE", "Opera");
– shift(@browser);

51

52
Unshift/Shift (Continued)

• You can keep the value you deleted from the array by
assigning the shift function to a variable
– @browser = ("NS", "IE", "Opera");
– $old_first_element= shift(@browser);

52

53
Push/Pop

• These two functions are just like unshift and shift,
except they add or delete from the right side of an
array (the last position)

• So, if you want to add an element to the end of an
array, you would use the push function and to
delete from the right side, you would use the pop
function
– @browser = ("NS", "IE", "Opera");
– push(@browser, "Mosaic");
– push (@browser, “Safari“, @browser[1..2]);
– $last_element = pop(@browser);

53

54
A table of array hacking functions

54

55
Chop & Chomp

• If you want to take the last character of each element in an
array and "chop it off", or delete it, you can use the chop
function
– @browser = ("NS4", "IE5", "Opera3");
– chop(@browser);

• If you want to remove newline characters from the end of
each array element, you can use the chomp function
– @browser = ("NS4\n", "IE5\n", "Opera3\n");
– chomp(@browser);

• The chomp function is much safer than the chop function,
as it will not remove the last character if it is not \n 55

56
Chop & Chomp (Continued)

• Guess what happened with following codes…
– print "Please tell me your name: ";
– $name=<STDIN>;
– print "Thanks for making me happy, $name !\n";

• How can we correct this???

56

57
Sort

• You can sort in ascending or descending order with
numbers or strings

• Numbers will go by the size of the number, strings will go
in alphabetical order

@browser = ("NS", "IE", "Opera");
@sortedBrowser = sort (ascend @browser);
print “@sortedBrowser\n”;
sub ascend {
$a cmp $b;
}

57

58
Built-in Sorting of Arrays

• Two ways to sort:

• Default : sorts in a standard string comparisons order
– sort LIST

• Usersub: create your own subroutine that returns an
integer less than, equal to or greater than 0
– sort USERSUB LIST
– The <=> and cmp operators make creating sorting subroutines

very easy
– If you are comparing numbers, your comparison operator should

contain non-alphas, if you are comparing strings the operator should
contains alphas only

58

59
Sorting Numerically

• The sort function compares two variables, $a and $b

• The result is
– 1 if $a is greater than $b
– -1 if $b is greater than $a
– 0 if $a and $b are equal

59

60
Sorting Example

– #!/usr/local/bin/perl -w
– @unsortedArray = (3, 10, 76, 23, 1, 54);
– @sortedArray = sort numeric @unsortedArray;

– print “@unsortedArray\n”;
– print “@sortedArray\n”;

prints 3 10 76 23 1 54
prints 1 3 10 23 54 76

– sub numeric {
– $a <=> $b
– }

60

61
Sorting Example (Continued)

%countries=('976', 'Mongolia', '52', 'Mexico', '212', 'Morocco',
'64', 'New Zealand', '33', 'France');

foreach (sort { $a <=> $b } keys %countries) {
print "$_ $countries{$_}\n";

}

foreach (sort values %countries) {
print "$_ \n";

}

foreach (sort { $countries{$a} cmp $countries{$b} } keys %countries) {
print "$_ $countries{$_}\n";

} 61

62
Sorting Example (Continued)

You can sort several lists at the same time:

%countries=('976', 'Mongolia', '52', 'Mexico', '212', 'Morocco',
'64', 'New Zealand', '33', 'France');
@nations=qw(China Hungary Japan Canada Fiji);

This sorts @nations and the values from %countries into a new array
@sorted= sort values %countries, @nations;

foreach (@sorted) {
print "$_\n";

}

62

63
foreach

• foreach – automatic iteration over an array

• Example:
– foreach $element (@array) {
– print “$element\n”;
– }
– This goes through each member ('iterates', another good

technical word to use) of @array, and assigns each
member in turn to the variable $element

• This is similar to :
– for ($i = 0; $i <= $#array; $i++) {
– print “$array[$i]\n”;
– } 63

64
$_ : Default Input and Searching Variable

• Previous example can be much shorter with $_
• Example:

– foreach (@array) {
– print “$_”;
– }
– If you don't specify a variable to put each member into, $_

is used instead as it is the default for this operation

• This is similar to :
– foreach (@array) {
– print ;
– }
– As we haven't supplied any arguments to print , $_ is

printed as default
64

65
Sorting with foreach

• The sort function sorts the array and returns the
items in sorted order

• Example :
– @array = (“Larry”, “Curly”, “Moe”);
– foreach $element (sort @array) {
– print “$element ”;
– }

• Prints the elements in sorted order:
– Curly Larry Moe

65

66
reverse /join

• You can reverse the order of the array elements
with the reverse function
– @browser = ("NS", "IE", "Opera");
– reverse(@browser);

• You can create a flat file database from your array
with the join function (this is more useful if you are
reading and writing from files)

• The function creates a variable for each element,
joined by your delimiter
– $result = join $glue, @pieces;
– @browser = ("NS", "IE", "Opera");
– $brower_sting = join(":", @browser); 66

67
Arrays to Strings – join (Example)

• Array to space separated string
– @array = (“Larry”, “Curly”, “Moe”);
– $string = join(“ “, @array);
– # string = “Larry Curly Moe”

• Array of characters to string
– @stooge = (“c”, “u”, “r”, “l”, “y”);
– $string = join(“”, @stooge);
– # string = “curly”

67

68
split

• It allows you to create an array of elements by
splitting a string every time a certain delimiter (a
character of your choice) shows up within the string
– @fields = split /separator/, $string;
– $browser_list="NS:IE:Opera";
– @browser= split(/:/, $browser_list);

• Notice in the split function that you place your
delimiter between two forward slashes

• You then place the string you want to split as the
second argument

68

69
Strings to Arrays : split (Example)

• Split a string into words and put into an array
– @array = split(/ /, “Larry Curly Moe”);
– # creates the same array as we saw previously

• Split into characters
– @stooge = split(//, “curly”);
– # array @stooge has 5 elements: c, u, r, l, y

• Split on any character
– @array = split(/:/, “10:20:30:40”);
– # array has 4 elements : 10, 20, 30, 40

69

70
Strings to Arrays : split (Continued)

test”;
• split on Multiple White Space

– @array = split(/\s+/, “this is a \t
– # array has 4 elements : this, is, a, test

• Default for split is to break up $_ on white space
– @fileds = split;
– # like split /\s+/, $_;

• More on ‘\s+’ later

70

71
Perl Associative Arrays (Hashes)

• Why use hashes ?
– When you want to look something up by a keyword

– Suppose we wanted to create a program which returns the name
of the country when given a country code

– We'd input ES, and the program would come back with Spain

• Typical application of Hashes in Perl
– Given name, family name
– Host name, IP address # %ip_address

– http://www.stonehenge.com, 123.45.67.89

– IP address, host name # %host_name
– %host_name = reverse %ip_address;

– Username, number of disk blocks they are using
– Driver’s license number, name
– Plate number, registered address 71

http://www.stonehenge.com/

72
Perl Associative Arrays (Hashes)

• Unlike a regular array, however, you get to use your
own text strings to access elements in the array

• When a regular array is created, its variables stay in
the same order you created them in. With a hash,
perl reorders elements for quick access

72

73
Perl Associative Arrays (Hashes)

• Associative arrays are created with a set of
key/value pairs
– A key is a text string of your choice that will help you

remember the value later
– The value, then, is the value of the variable you want to

store

• Each key of a hash must be unique
– If you do define a certain key twice, the second value

overwrites the first
– The values of a hash can be duplicates, but never the keys

73

74
Example (Hashes)

my %family_name = (“fred” => “flintstone, “dino” => undef,
“barney” = “rubble”, “betty” => “rubble”);

my @k = keys %family_name;
my $k_count = @k;
my @v = values %family_name;

$foo = “bar;
print "$family_name{ $foo . “ney”}"; # prints ???

while (($key, $value) = each %family_name) {
print "$key => $value\n";

}

74

75
Arrays & Associative Arrays (Hashes)

• If we want 'Belgium' from @myarray and also from
%myhash
– print "$myarray[1]";
– print "$myhash{'BE'}";

75

76
Define an Associative Array

• The percent (%) sign at the beginning in front of the
array name
– %array_name = ('key1', 'value1', 'key2', 'value2');

• This indicates that what follows is an associative
array, so the interpreter knows to use the keys and
values, rather than assign index numbers to each
string
– %our_friends = ('best', 'Don', 'good', 'Robert', 'worst', 'Joe');

76

77
Access Your Elements in Hash

• To access an element, you use your key string in
place of a number
– You define a plain variable with the array name followed by

its key
– So if we wanted to get the name of our 'good' friend, we would

use
– $our_friends{'good'}

• Notice the key string 'good', which will give us back
our good friend Robert
– $good_friend = $our_friends{'good'};
– print "I have a good friend named $good_friend.\n";

77

78
Access Your Elements in Hash (Continued)

%countries=('NL', 'The Netherlands', 'BE', 'Belgium', 'DE', 'Germany',
'MC', 'Monaco', 'ES', 'Spain');

78

79
Adding to the Hash

• Like a regular array, you can add a value to an
associative array by simply defining a new value in
your script
– %our_friends = ('best', 'Don', 'good', 'Robert', 'worst', 'Joe');
– $our_friends{'cool'} = "Karen";

• This adds the key/value pair of 'cool' and 'Karen' to
the %our_friends array

79

80
Deleting from the Hash

• You can also delete a key/value pair from an
associative array using the delete function, which is
a little different than the regular array
– %our_friends = ('best', 'Don', 'good', 'Robert', 'worst', 'Joe');
– delete ($our_friends{'worst'});

• Associative arrays are very handy when you are
trying to get input from forms on a web page
– Most scripts that do this read the form values in as

key/value pairs to an associative array, thus making it easy
to use the values you need

80

81
Scoping rule with my & local

• Scope (visibility) of a variable
– Lexical (static) scoping: my
– Dynamic scoping: local

• A my variable has a block of code as its scope
– A block is often declared with braces { }

• A local variable can affect what happens outside of
the block of code in which it is used
– Compiler can’t tell its behavior
– Suspend the use of global variable, and use a local value
– Understand concept with run-time stack during function calls

81

82

Example (my & local variables)

#!/usr/bin/perl

$x = 1;

sub foo {

print “$x\n”;

}

sub bar {

$x = 2; # my, local $x ???

foo();

}

&foo;

&bar;

&foo;

82

83

Example (my & local variables)

$var = 5;

print $var, “\n”;

&fun1;

print $var, “\n”;

sub fun1 {

$var = 10; #my, local $var ???

print $var, “\n”;

&fun2;

print $var, “\n”;

}

sub fun2 {

$var++;

}

@foo = (1,2, 3, 4, 5);

foreach my $var (@foo) { print $var, “\n”;}

83

84
Length

• The length function simply gives you back the
number of characters in a string variable
– $ice="cold";
– $length_ice = length ($ice);

• The length function always works on strings and it
creates scalar context for its parameters

• What will be the output? Why?
$my_string = “abc”;
@my_array = (1,2,3,4,5);
print (length $my_string);
print (length @my_array);

84

82
Substring (substr)

• The substring function is a way to get a portion of a
string value, rather than using the entire value
– $portion = substr($string_variable, start number, length);

– $string_variable will be the variable from which you wish to
create the substring

– The start number is the character within the string from which
you want to start your substring
– Remember, though- the first number in a string here is zero rather than

1, so be careful when you make the count
– The length above is the amount of characters you wish to take

out of the string

– $ice="cold";
$age = substr($ice, 1, 3);
print "It sure is $ice out here today.";
print "I wonder if I am $age enough to play in the snow?";

85

83
Example

%countries=('NL', 'The Netherlands', 'BE', 'Belgium', 'DE', 'Germany',

'MC', 'Monaco', 'ES', 'Spain');

print "Enter the country code:";

chomp ($find=<STDIN>);

$find=~tr/a-z/A-Z/; # make sure everything is in uppercase

print "$countries{$find} has the code $find\n";

foreach (reverse sort keys %countries) {

print "The key $_ contains $countries{$_}\n";

}

86

84
Subroutines

• User-defined functions in Perl
– Let us recycle one chunk of code many times in one program
– Name of subroutine is another Perl identifier

– Letters, digits, and underscores, but it can’t start with a digit

– To invoke subroutine, place & in front of its name

$n = &max(10, 15);

sub max {

my ($m, $n) = @_; # new private variable for this block

if ($m > $n) { $m } else { $n }

}
87

85
Persistent, Private Variable

• Perl will keep private variable values between calls with
“state”
– The first time we call a subroutine, Perl declares and initialize

state variable(s)
– Perl ignores the statement on subsequent calls
– Between calls, Perl retains the value of state variable

private, persistent variable $n
sub marine {

state $n = 0;
$n += 1;
print “Hello, sailor number $n!\n”;

}

88

86
Perl Start

• ActivePerl - install at home
– www.perl.org
– www.perl.com Has rpm's for Linux
– www.activestate.com binaries for Windows

• Perl resources - from homepage

89

http://www.perl.org/
http://www.perl.com/
http://www.activestate.com/

87
Hello World

• Program:
– #!/usr/local/bin/perl –w
– print “Hello World!\n”;

• Save this as “hello.pl”

• Give it executable permissions
– chmod ug+x hello.pl

• Run it by typing:
– ./hello.pl
– or
– perl hello.pl

90

88
Hello World (Continued)

• “.pl” extension is optional but is commonly used
– E.g. .pro or .prlg for Prolog

• The first line “#!/usr/local/bin/perl” tells UNIX where
to find Perl

• “-w” switches on warnings : not required but a really
good idea

91

89

A String Example Program

#!/usr/local/bin/perl

$var1 = “oscar”;
$var2 = “henry”;
$var3 = “diana”;

print ucfirst($var1); # Prints ‘Oscar'
print uc($var2); # Prints ‘HENRY'
print lcfirst(uc($var3)); # Prints ‘dIANA'

92

90
Pattern Matching

• Perl has many built in capabilities for pattern
matching
– Pattern matching is one of Perl's most powerful and

probably least understood features

• When do we use pattern matching?
– Pattern matching allows programs to scan data for patterns

and extract data
– For example, to look for a specific name in a phone list or all of

the names that start with the letter a.

– Can be used to reformat documents
– Search & Replace

93

91
Regular Expressions

• You can use a regular expression (regex) to find
patterns in strings
– A regular expression is a pattern to be matched

• Three main use for regex
– Matching

– use normal characters to match single characters
– uses the m/ / operator, which evaluates to a true or false value

– Substitution
– substitutes one expression for another; it uses the s/ / / operator

– Translation
– translates one set of characters to another and uses the tr///

operator.

94

92
Perl’s Regular Expression Operators

All three regular expression operators work with $_
as the string to search. You can use the binding
operators (=~ and !=) to search a variable other
than $_.

95

93
Regular Expressions (Continued)

• Using a regex to match against a string returns
either true or false
– $name=~m/John/
– $name=~/John/ # Simpler way
– # If “John” is inside $name, then True
– The regular expression itself is between / / slashes, and

the =~ operator assigns the target for the search

• Sometimes you just want to see if there is a match

• Other times you might want to do something with
the matched string
– Replace it or store it in a variable 96

94
The Matching Operator (m//)

• The matching operator (m//) is used to find patterns
in strings
– One of its more common uses is to look for a specific string

inside a data file
– For instance, you might look for all customers whose last name

is "Johnson" or you might need a list of all names starting with
the letter s

• The matching operator only searches the $_
variable
– makes the match statement shorter because you don't

need to specify where to search
– Example

– $needToFind = "bbb";
– $_ = "AAA bbb AAA";
– print "Found bbb\n" if m/$needToFind/; 97

95The Matching Operator (m//)
(Continued)

• Using the matching operator to find a string inside a
file is very easy because the defaults are designed
to facilitate this activity

• Example
– $target = "M";
– open(INPUT, "<findstr.dat");
– while (<INPUT>) {
–
–
–

if (/$target/) {
print "Found $target on line $.";

}
– }
– close(INPUT); 98

96The Matching Operator (m//)
(Continued)

99

97
Example

if (/barney.*fred/is) { # both /i and /s

print “That string mentioneds Fred after Barney!\n”;

}

100

98
=~ operator

• The search, modify, and translation operations work
on the $_ variable by default

• What if the string to be searched is in some other
variable?
– That's where the binding operators come into play
– Perl lets you bind the regular expression operators to a

variable other than $_

• There are two forms of the binding operator: the
regular =~ and its complement !~

101

99
=~ operator (Continued)

• Perl uses the =~ operator to compare a string to a
regular expression

• The string to compare is on the left, regex on the
right

• This returns either 1 or 0 (true or false)
– $mycar =<STDIN>;
– if ($mycar =~ /abc/) {
– print ”$mycar contains ‘abc’!”;
– }
– else {
– print ”$mycar does not contains ‘abc’!”;
– } 102

100
Example

$scalar = "The root has many leaves and root";

$match = $scalar =~ m/root/;

$substitution = $scalar =~ s/root/tree/g;

$translate = $scalar =~ tr/h/H/;

print("\$match = $match\n"); # $match = ???

print("String has not root.\n") if $scalar !~ m/root/;

print("\$substitution = $substitution\n"); # $substitution = ???

print("\$translate = $translate\n"); # $translate = ???

print("\$scalar = $scalar\n"); # $scalar = ???
103

101
[] – Character Class

• A group of characters in square brackets will match
any characters in the bracket

• A caret (^) negates the match
– /[ab][cd]/
– /[aeiou]/
– /[^aeiou]/
– /[0123456789]/

This will match a or b followed by c or d
This will match all vowels
This will match anything but vowels
All numerals

– compare this with m/0123456789/ # exact digit sequence

– /[0-9]/ All numerals (Use the – to specify a range)

104

102
Symbolic Character Class

. # matches all characters except for the newline

\d # same as [0-9]

\D # same as [^0-9]

\s # same as [\t \n]

\S # same as [^\t \n]

\w # same as [a- zA-Z0-9_]

\W # same as [^a-zA-Z0-9_]

105

103
Symbolic Character Class (Example)

$_ = "AAABBBCCC";
$charList = "ADE";
print "matched" if m/[$charList]/; #will display matched

$_ = "AAABBBCCC";
print "matched" if m/[^ABC]/; #will display nothing
(This match returns true only if a character besides A, B, or C is
in the searched string)

$_ = "AAABBBCCC";
print "matched" if m/[^A]/; # string "matched" will be displayed
(because there is a character besideA)

106

104
Word Boundaries

• /b option is used for exact word boundaries

• m/foo\b/; # will match foo but not foobar

• m/\bwiz/; # match wizard but not geewiz

107

$mystr = “abcfeed”;
$ print "matched" if mystr =~ m/foo|far|fee/;
$ print "matched" if mystr =~ m/\b(foo|far|fee)\b/;

105
Matching at specific points

• Can you see the difference below???

• if (/n/i) {
– True if the word contains an ‘N’ or ‘n’ anywhere in it

• if (/^n/i) {
– True if the string starts with an ‘N’ or 'n‘

• if (/n$/i) {
– True if the string ends with an ‘N’ or 'n‘

• if (/[^n]/i) {
– True if the word does not contain an ‘N’ or 'n‘ anywhere in it

108

106
Example

@names=qw(Karlson Carleon Karla Carla Karin Carina);

foreach (@names) { # sets each element of @names to $_ in turn

if (/[\-a-eKCZ]arl[^sa]/) {

print "Match ! $_\n";

} else {

print "Sorry. $_\n";

}

}

109

107
Negating the regex

• If you want to negate the entire regex, change =~ to !~

• if ($_ !~/[KC]arl/) {

• if (!/[KC]arl/) { # another way

110

108
Grouping

• Grouping allows you to look for a certain (or arbitrary)
amount of something
– You can look for at least n times
– At least n but not more than m (a range)
– 1 or more of something
– 0 or 1, 0 or more (optional)

111

109
Grouping Quantifiers

• A quantifier with a pattern determines how many times
pattern must appear

• Quantifiers:
– * 0 or more times
– + 1 or more times
– ? 0 or 1 time
– {n} Exactly n times
– {n,} At least n times
– {n,m} At least n , but no more than m times

/-?\d+\.?\d*/
/ -? \d+ \.? \d* /x

what is this doing?
a little better

112

110
Grouping Quantifiers (Continued)

• Parentheses may be used for grouping
– /fred+/ matches strings like freddddddd but not like

fredfredfred
– /(fred)*/ # matches strings like “hello, world”

• Parentheses also gives us a way to reuse part of the
string directly in the match
– Back references (\1, \2, \3, etc)

113

111
Example

$_ = “abba”;
if (/(.)\1/) { # matcjes ‘bb’

print “It matches same character next to itself!\n”;
}
$_ = “yabba dabba doo”;
if (/y(….) d\1/)
if (/y(.)(.)\2\1/)

matches ???
matches ???

$_ = “aa11bb”;
if (/(.)\111/)
if (/(.)\g{1}11/)

matches ???
same

114

112
Example

$_ = "AA AB AC AD AE";
m/^(\w+\W+){5}$/;
match statement will be true only if five words are present in the
$_variable

m/^\w+/; # will match "QQQ" and "AAAAA" but not "" or " BBB “.
match a starting word whose length is unknown

m/\s*\w+/; # will match "QQQ" and "AAAAA" and " BBB ".
allow leading white

$_ = "AAA BBB CCC"; m/(\w+)/; print("$1\n");
looked for the first word in a string and stored it into the firstbuffer,
$1 (will display AAA)

115

113
Example

$_ = "AAA BBB CCC";
@matches = m/(\w+)/g;
print("@matches\n");
want to find all the words in the string, you need to use the /g (The
program will display AAA BBB CCC)

m/(.)\1/;
need to find repeated characters in a string like the AA in "ABC AA
ABC“

m/^\s*(\w+)/;
need to find the first word in a string

116

114
Saving Parts of a Match

• Parentheses allow you to save pieces of your match

• If the match is successful, the item in parentheses get
stored in $1, $2, $3, etc according to their order
– $myvar =~ /System Configuration: (.*)/;

– everything from (to) will be put into $1 if the match is successful
– . matches any non-newline character
– * means 0 or more of the previous character
– So, this saves everything after “System Configuration: “ into $1

117

115
Example

$_ = ‘My email address is John@Yahoo.com.’; # any change with “” ???

/(john)\@(yahoo.com)/i; # Paren forces matches to $1, $2, etc

print “Found it! $1 at $2\n”; # What will be printed???

$_='My email address is <john@yahoo.com> !.';

/<([^>]+)/i;

print "Found it ! $1\n"; # What will be printed???

118

mailto:John@Yahoo.com
mailto:john@yahoo.com

116
Alteration

• The | character is used to specify alternative
expressions
– m/abc/ will match "abc" but not "cab" or "bca"

• Basically an OR function for regex’s
– m/\w|\w\w/ will match a single word character or two

consecutive word characters
– $class =~ /mat374|mat375/;

• This works well with parentheses
– $class =~ /(mat374|mat375)/;
– print “The class is $1”;

119

117
Searching & Replacing

• /PATTERN/

• m/PATTERN/

• s/PATTERN/REPLACE/

• tr/searchlist/replacelist/

• split(/PATTERN/, $line)

Match Operator

Match Operator

Search & Replace

Character Search & Replace

split on regex

120

118
The Substitution Operator (s///)

• The substitution operator (s///) is used to change
strings

• Examples
– $needToReplace = "bbb";
– $replacementText = “1234567890”;
– $_ = "AAA bbb AAA";
– $result = s/$needToReplace/$replacementText/;
– print $_;
– print $result ; # the number of substitutions made

121

119
The Substitution Operator (s///) (Continued)

• The substitution operator is used to remove
substrings

• Examples
– $needToReplace = "bbb";
– $replacementText = “1234567890”;
– $_ = "AAA bbb AAA";
– s/bbb//;
– print $_;

122

120
Options for the Substitution Operator

123

121
Example

$_ = “home, sweet home!”;
s/home/cave/g;
print “$_\n”; # print what???

$_ = “ Input
s/\s+/ /g;
s/^\s+//;
????

data\t may have extra whitespace. ”;
collapse white spaces
replace leading white spaces with nothing
replace trailing white spaces with nothing

124

122
The Translation Operator (tr///)

• The translation operator (tr///) is used to change
individual characters in the $_ variable

• It requires two operands, like this: tr/a/z/;
– This statement translates all occurrences of a into z

• If you specify more than one character in the match
character list, you can translate multiple characters
at a time, like this: tr/ab/z/;
– This statement translates all a and all b characters into the

z character

125

123
The Translation Operator (tr///) (Continued)

• If the replacement list of characters is shorter than the
target list of characters, the last character in the
replacement list is repeated as often as needed

• However, if more than one replacement character is
given for a matched character, only the first is used,
like this: tr/WWW/ABC/;
– This statement results in all W characters being converted to

an A character
– The rest of the replacement list is ignored

• Unlike the matching and substitution operators, the
translation operator doesn't perform variable
interpolation 126

124
Options for the Translation Operator

127

125Options for the Translation Operator
(Continued)

• Normally, if the match list is longer than the
replacement list, the last character in the replacement
list is used as the replacement for the extra characters.
However, when the d option is used, the matched
characters are simply deleted.

• If the replacement list is empty, then no translation is
done. The operator will still return the number of
characters that matched, though. This is useful when
you need to know how often a given letter appears in a
string. This feature also can compress repeated
characters using the s option.

128

121
Example

$x = “ ’quoted words’ ”;
$x =~ s/^’(.*)’$/$1/;
print “$x”; # print what???

$y = "I'm fine. Thank you.";
$count = ($y =~ tr/././); # $count = ($y =~ s/././); ???
print $y, "\n";
print $count, "\n";

129

126
Examples of Regex

130

127
Basic I/O: Reading Input

• To get input from a user, use <STDIN> filehandle

• When assigned as a scalar, one line is read
– $a = <STDIN>;

– $a will contain one line

• When assigned as an array, multiple lines are read
– @a = <STDIN>;

– @a will contain an element for each line entered

131

128
@ARGV

• The @ARGV array holds any arguments typed on the
command line

• $0 is a special variable which holds the name of your
script

• If you invoke a program like this:
– % myprog.pl file1.txt file2.txt

• The following variables get set automatically:
– $ARGV[0] = “file1.txt”
– $ARGV[1] = “file2.txt”
– $0 = “myprog.pl”

132

129
Diamond Operator

• Special kind of line-input operator
– Input comes from the user’s choice of input

• Unlike <STDIN> , the diamond operator gets its data
from the file or files specified on the command line
that invoked the Perl program
– # In yourprog.pl
– while (<>) {

print $_;
}
Now you invoke your program
yourprog.pl file1 file2 file3

– It will just print each line of file until EOF is reached

yourprog.pl file1 - file2 133

130
Diamond Operator (Continued)

• You can even set this array within your program
and have the diamond operator work on that new
list rather than the command-line arguments
– @ARGV = ("aaa“, "bbb“, "ccc");

process files aaa, bbb, and cccwhile (<>) {
print $_;

}

134

131
Printing Output

• print() – takes a list of strings and sends each one to
STDOUT

• printf() - takes a format control string that defines how to
print the remaining arguments
– Good for formatting numbers – allows you to specify how many

decimal places to show

• Example
– $a = 1244.3892104;
– printf(“%10.2f %d %15s”, $a, $a, “Gumby”);

135

132
Filehandles

• A filehandle is a variable name used to access a file

• Filehandle should use UPPERCASE letters for their
name

• A filehandle is not prefixed by any special character

136

133
Using Filehandles

• There are usually three steps to using a filehandle:

• 1) Open the filehandle

• 2) Read/Write from/to the file

• 3) Close the filehandle

137

134
Creating a Filehandles

• The open () command creates a filehandle

• open () takes two arguments, the filehandle name and
an expression

• The expression is a mode followed by a file name
– There are three modes:
– read <
– write >
– append >>

138

135
Reading from a File

• open(FH, “<filename”)

• Example
– open(DICT, “</usr/dict/words”);

– #open /usr/dict/words for reading

– while ($line = <DICT>) { # Loop through each line
– chomp($line);
– print “$line\n”; # print out the words…
– }
– close(DICT); # close the filehandle

139

136
Writing to a File

• open(FH, “>filename”)

• Example
– open(LOGFILE, “>log.txt”);

– #open log.txt for writing

– $user = “bart”;
– print LOGFILE “$user\n”;
– close(LOGFILE);

write an entry to the log file…
close the filehandle

• Opening a file for writing will overwrite the file if it
already exists

140

137
Appending to a File

• open(FH, “>>filename”)
– Opening a file for appending will create the file if it does not

exists
– Otherwise, lines are added to the end of the file as they are

written

• Example
– open(LOGFILE, “>>log.txt”); # open log.txt for writing

get today’s date from system– $date = `date`;
– chomp($date);
– $user = “bart”;
– print LOGFILE “$date - $user\n “; # adds an entry to the

log file…
– close(LOGFILE); # close the filehandle

141

138
backticks

• Backticks (`command`) can be used to execute system
commands

• The result can be assigned as a scalar or list

• Example
– @dirlist = `ls –l`

– # get a listing of current directory, ls = `dir` for windows
– $num = $#dirlist + 1;

– # get the number of lines returned
– print “There are $num files in this directory\n”;

142

139
Summary: Metacharacters

• For all their power and expressivity, patterns in Perl
recognize the same 12 traditional metacharacters

• Some simple metacharacters stand by themselves
– They don't directly affect anything around them
– . ^ $

143

140
Summary: Metacharacters (Continued)

• Some work like postfix operators
– They govern what immediately precedes them
– * + ?

• One metacharacter acts like an infix operator
– It stands between the operands it governs
– |

• Some work like circumfix operators
– (...) [...]
– They govern something contained inside them

144

141
Summary: Metacharacters (Continued)

• Backslash disables the others
– When a backslash precedes a nonalphanumeric character in a

Perl pattern, it always makes that next character a literal
– \. matches a real dot, \$ a real dollar sign, \\ a real backslash,

and so on

145

142
Summary: Metacharacters (Continued)

• General Regex Metacharacters

146

143
Summary: Metacharacters (Continued)

• Regex Quantifiers

147

