
1

Programming Languages:

Lecture 1

Chapter 1: Introduction

Jinwoo Kim
jwkim@jjay.cuny.edu

mailto:jwkim@jjay.cuny.edu

2

Introduction

• Discussion of syllabus

• Please visit class homepage often for any
announcement or updates

– http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/

• Reading assignment:

– Chapter 1 from textbook

3

Course Objective

• My goal is not to teach you a few more
programming languages

– You already know how to program

– Comparative study of programming languages

– General issues in design and implementation

• Topics

– Programming paradigms

– Syntax and semantics

– Interpreters

– Names, scope and binding

– Types and type analysis

– Memory management

– Control abstraction

4

Chapter 1 Topics

• Reasons for Studying Concepts of Programming
Languages

• Programming Domains

• Language Evaluation Criteria

• Influences on Language Design

• Language Categories

• Language Design Trade-Offs

• Implementation Methods

• Programming Environments

5
Eric Gunnerson - Why are there so many

programming languages?

https://www.youtube.com/watch?v=mf8eihUbcjg

6

Case Study: Ruby

• Ruby was conceived on February 24, 1993 by Yukihiro
Matsumoto who wished to create a new language that
balanced functional programming with imperative
programming

• Matsumoto has stated, "I wanted a scripting language that
was more powerful than Perl, and more object-oriented
than Python. That's why I decided to design my own
language“

• At a Google Tech Talk in 2008 Matsumoto further stated, "I
hope to see Ruby help every programmer in the world to be
productive, and to enjoy programming, and to be happy.That
is the primary purpose of Ruby language."

• http://www.youtube.com/watch?v=ix2DeCzuckc

http://www.youtube.com/watch?v=ix2DeCzuckc

7

How many programming languages?

• Interesting survey from DoD in 1994

– Try to compare the number of programming languages used in DoD
as compared of 20 years ago

– 1974: minimum of 450 languages were used in DoD

– 1994: 37 used in major systems

• Interesting polls from “programmers heaven website” in
December, 2001

8

PYPL Popularity of Programming Language

10
The long term trends (2000 ~ 2012) for

the top 10 programming languages

11
The long term trends for the top 10

programming languages

12
Reasons for Studying Concepts of

Programming Languages

• Increased ability to express ideas

• Improved background for choosing appropriate languages

• Increased ability to learn new languages

• Better understanding of significance of implementation

• Better use of languages that are already known

• Overall advancement of computing

13

Programming Domains

• Scientific applications
– Large number of floating point computations

– Use of arrays
– Fortran

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated

– Use of linked lists
– LISP

• Systems programming
– Need efficiency because of continuous use
– C

• Web Software
– Eclectic collection of languages: markup (e.g., XHTML), scripting

(e.g., PHP), general-purpose (e.g., Java)

14

Interesting links

• How to shoot yourself in the foot with languages?

– http://www-users.cs.york.ac.uk/~susan/joke/foot.htm

• ACM “Hello World” project

– http://www2.latech.edu/~acm/HelloWorld.html

• 99 bottles of beer
–http://web.mit.edu/kenta/www/two/beer.html

• The Great Computer Language Shootout – A collection of
benchmarks performed on many languages

– http://dada.perl.it/shootout/

• Scripting: Higher Level Programming for the 21st Century

– http://www.tcl.tk/doc/scripting.html

http://www-users.cs.york.ac.uk/~susan/joke/foot.htm
http://www2.latech.edu/~acm/HelloWorld.html
http://web.mit.edu/kenta/www/two/beer.html
http://dada.perl.it/shootout/
http://www.tcl.tk/doc/scripting.html

15

Language Evaluation Criteria

• Readability: the ease with which programs can be
read and understood

• Writability: the ease with which a language can be
used to create programs

• Reliability: conformance to specifications

– e.g., performs to its specifications

• Cost: the ultimate total cost

16

Evaluation Criteria: Readability

• Overall simplicity

– A manageable set of features and constructs

– Few feature multiplicity
– Less means of doing the same operation

– Minimal operator overloading

• Orthogonality

– A relatively small set of primitive constructs can be combined in a
relatively small number of ways

– Every possible combination is legal

• Control statements

– The presence of well-known control structures
– e.g., while statement

• Data types and structures

– The presence of adequate facilities for defining data types and
structures

17

Evaluation Criteria: Readability (Continued)

• Syntax considerations

– Identifier forms: flexible composition

– Special words and methods of forming compound statements

– Form and meaning: self-descriptive constructs, meaningful keywords

18

Evaluation Criteria: Writability

• Simplicity and orthogonality

– Few constructs, a small number of primitives, a small set of
rules for combining them

• Support for abstraction

– The ability to define and use complex structures or
operations in ways that allow details to be ignored

• Expressivity

– A set of relatively convenient ways of specifying operations
– e.g., the inclusion of for statement in many modernlanguages

19

Evaluation Criteria: Reliability

• Type checking

– Testing for type errors

• Exception handling

– Intercept run-time errors and take corrective measures

• Aliasing

– Presence of two or more distinct referencing methods for the same
memory location

• Readability and writability

– A language that does not support “natural” ways of expressing an
algorithm will necessarily use “unnatural” approaches, and hence
reduced reliability

20

Evaluation Criteria: Cost

• Training programmers to use the language

• Writing programs (closeness to particular
applications)

• Compiling programs

• Executing programs

• Language implementation system: availability of free
compilers

• Reliability: poor reliability leads to high costs

• Maintaining programs

21

Evaluation Criteria: Others

• Portability

– The ease with which programs can be moved from one
implementation to another

• Generality

– The applicability to a wide range of applications

• Well-definedness

– The completeness and precision of the language’s official
definition

22

Influences on Language Design

• Computer Architecture

– Languages are developed around the prevalent computer
architecture, known as the Von Neumann architecture

• Programming Methodologies

– New software development methodologies (e.g., object-
oriented software development) led to new programming
paradigms and by extension, new programming languages

23

Computer Architecture Influence

• Well-known computer architecture: Von Neumann

• Imperative languages, most dominant, because of von
Neumann computers

– Data and programs stored in memory

– Memory is separate from CPU

– Instructions and data are piped from memory to CPU

– Basis for imperative languages
– Variables model memory cells

– Assignment statements model piping

– Iteration is efficient

24

The Von Neumann Architecture

25

The Von Neumann Architecture

• Fetch-execute-cycle (on a Von Neumann architecture
computer)

initialize the program counter

repeat forever

fetch the instruction pointed by instruction counter

increment the counter

decode the instruction

execute the instruction

end repeat

35

Von Neumann Bottleneck

• Connection speed between a computer’s memory
and its processor determines the speed of a
computer

• Program instructions often can be executed a lot
faster than the above connection speed; the
connection speed thus results in a bottleneck

• Known as Von Neumann bottleneck; it is the
primary limiting factor in the speed of computers

26

Programming Methodologies Influences

• 1950s and early 1960s

– Simple applications

– worry about machine efficiency

– Assembly and Fortran Languages

26

Programming Methodologies Influences

• Late 1960s

– People efficiency became important
– readability, better control structures

– structured programming

– top-down design and step-wise refinement

26

Programming Methodologies Influences

• Late 1970s:

– Process-oriented to data-oriented
– data abstraction

• Middle 1980s: Object-oriented programming

– Data abstraction + Inheritance + Polymorphism

27

Language Categories

• Imperative

– Central features are variables, assignment statements, and iteration

– Include languages that support object-oriented programming

– Include script languages and visual languages

– Examples: C, C++, Java, Perl, JavaScript, Visual Basic, etc

• Functional

– Main means of making computations is by applying functions to given parameters

– Examples: LISP, ML, Scheme

• Logic

– Rule-based (rules are specified in no particular order)

– Example: Prolog

• Object-oriented

– Data abstraction, inheritance, late binding

– Examples: Java, C++

• Markup/programming hybrid

– Markup languages extended to support some programming

– Examples: JSTL, XSLT

28

Language Design Trade-Offs

• Reliability vs. Cost of Execution
– Conflicting criteria

– Example: Java demands all references to array elements be checked
for proper indexing, which leads to increased execution costs

• Readability vs. Writability
– Another conflicting criteria

– Example: APL provides many powerful operators (and a large number
of new symbols), allowing complex computations to be written in a
compact program but at the cost of poor readability

• Writability (flexibility) vs. Reliability
– Another conflicting criteria

– Example: C++ pointers are very powerful and flexible but are
unreliable

29

Implementation Methods

• Compilation
– Programs are translated into machine language

29

Implementation Methods (Continued)

• Pure Interpretation
– Programs are interpreted by another program known as an

interpreter

29

Implementation Methods (Continued)

• Hybrid Implementation Systems
– A compromise between compilers and pure interpreters

– Ex. Java Bytecode Interpreter

30

Layered View of Computer

The operating system
and language
implementation are
layered over
Machine interface of a
computer

31

Compilation

• Translate high-level program (source language) into machine code
(machine language)

• Slow translation, fast execution

• Compilation process has several phases:

– lexical analysis: converts characters in the source program into lexical
units

– syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

– semantics analysis: generate intermediate code

– code generation: machine code is generated

32

The Compilation Process

33

Additional Compilation Terminologies

• Load module (executable image): the user and
system code together

• Linking and loading: the process of collecting
system program and linking them to user program

32

Compilation Takes Time…

32

Compilation Overhead

36

Pure Interpretation

• No translation

• Easier implementation of programs

– run-time errors can be easily and immediately displayed

• Slower execution

– 10 to 100 times slower than compiled programs

• Often requires more space

• Now rare for traditional high-level languages

• Significant comeback with some Web scripting languages

– e.g., JavaScript, PHP

37

Pure Interpretation Process

37

Pure Interpretation Process

37

How Interpreter Works?

37

Performance of Interpreter Bad…

38

Hybrid Implementation Systems

• A compromise between compilers and pure interpreters

• A high-level language program is translated to an
intermediate language that allows easy interpretation

• Faster than pure interpretation

• Examples
– Perl programs are partially compiled to detect errors before

interpretation

– Initial implementations of Java were hybrid; the intermediate form, byte
code, provides portability to any machine that has a byte code
interpreter and a run-time system (together, these are called Java
Virtual Machine)

39

Hybrid Implementation Process

40

Just-in-Time Implementation Systems

• Initially translate programs to an intermediate
language

• Then compile intermediate language into machine
code

• Machine code version is kept for subsequent calls

• JIT systems are widely used for Java programs

• .NET languages are implemented with a JIT system

40

Just-in-Time Implementation Systems

40

Language Speeds Compared

41

Preprocessors

• Preprocessor macros (instructions) are commonly used
to specify that code from another file is to be included

• A preprocessor processes a program immediately
before the program is compiled to expand embedded
preprocessor macros

• A well-known example: C preprocessor
– expands #include, #define, and similar macros

42

Programming Environments

• The collection of tools used in software development

• UNIX

– An older operating system and tool collection

– Nowadays often used through a GUI (e.g., CDE, KDE, or
GNOME) that run on top of UNIX

• Borland JBuilder

– An integrated development environment for Java

• Microsoft Visual Studio.NET

– A large, complex visual environment

– Used to program in C#, Visual BASIC.NET, Jscript, J#, and C++

43

Summary

• The study of programming languages is valuable for a number of
reasons:

– Increase our capacity to use different constructs

– Enable us to choose languages more intelligently

– Makes learning new languages easier

• Most important criteria for evaluating programming languages
include:

– Readability, writability, reliability, cost

• Major influences on language design have been machine
architecture and software development methodologies

• The major methods of implementing programming languages
are: compilation, pure interpretation, and hybrid implementation

44

Homework

• Homework submission should follow schedule on the class

homepage

• Read articles introduced in this lecture

– Scripting: Higher Level Programming for the 21st Century
– http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/scriptHistory.pdf

– Who is John Von Neumann
– http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/VonNeumann.pdf

http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/scriptHistory.pdf
http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/VonNeumann.pdf

