COLLEGE

CRIMINAL
JUSTICE

Programming Languages:
Lecture 1

Chapter 1: Introduction

Jinwoo Kim
wkim@ijjay.cuny.edu

mailto:jwkim@jjay.cuny.edu

Introduction

LLE

E
AL

e Discussion of syllabus

e Please visit class homepage often for any
announcement or updates

— http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/

e Reading assignment:
— Chapter 1 from textbook

ix Course Objective

JUSTICE

e My goal is not to teach you a few more
programming languages
— You already know how to program
— Comparative study of programming languages
— General issues in design and implementation

e Topics
— Programming paradigms
— Syntax and semantics
— Interpreters
— Names, scope and binding
— Types and type analysis
— Memory management
— Control abstraction

Chapter 1 Topics

e Reasons for Studying Concepts of Programming
Languages

e Programming Domains

e Language Evaluation Criteria

e Influences on Language Design
e Language Categories

e Language Design Trade-Offs

e Implementation Methods

e Programming Environments

Eric Gunnerson - Why are there so many

iR ghuse Erogramming Ianguages?

https://www.youtube.com/watch?v=mf8eihUbcjg

Case Study: Ruby

e Ruby was conceived on February 24, 1993 by Yukihiro
Matsumoto who wished to create a new language that
balanced functional programming with imperative
programming

° Matsumoto has stated, "l wanted a scripting language that
was more powerful than Perl, and more object-oriented
than Python. That's why | decided to design my own
language”

e Ata Google Tech Talk in 2008 Matsumoto further stated, "I
hope to see Ruby help every programmer in the world to be
productive, and to enjoy programming, and to be happy. That
IS the primary purpose of Ruby language."

o http://www.youtube.com/watch?v=ix2DeCzuckc

http://www.youtube.com/watch?v=ix2DeCzuckc

ix How many programming languages?

OF
CRIMINAL
JUSTICE

e Interesting survey from DoD in 1994

— Try to compare the number of programming languages used in DoD
as compared of 20 years ago

— 1974: minimum of 450 languages were used in DoD
— 1994 37 used in major systems

e Interesting polls from “programmers heaven website” in
December, 2001

G N
How many programming
languages do you know?

ak | 11%
2 == 12%
3 s===] 20%
4 = 13%
5 or more B — 38%
None [sv) 7%

Total votes: 544
Start Date: 2001-12-17 End Date:
2001-12-24

CRIMINAL
JUSTICE

ix “ PYPL Popularity of Programming Language

Worldwide, Dec 2022 compared to a year ago:

Rank Change Language Share Trend
1 Python 2534 % -1.0%
2 Java 16.93 % -0.8 %
- o 3 JavaScript 928 % +0.3 %
The PYPL PopulantY of Programming Language
4 CE 6.89 % -0.3 %
Index is created by analyzing how often language] A oo 0am
tutorials are searched on Google. 6 PHE s19% 0%
7 R 398 % -0.1%
The more a language futerial is searched, the more popular the language is 2 PN TypeScript 279 +11%
assumed to be. If is a leading indicator. The raw data comes from Google
9 Ll Swift 223% +0.6 %
Trends.
10 el Objective-C 222% +0.1%
If you believe in collective wisdom, the PYPL Popularity of Programming
c E . . 1 Lk Go 202% +0.7 %
Language index can help you decide which language to study, or which one to
use in a new software project. = EEE Rt LR 08
13 Jdbbd Kol 171 % -0.0%
14 el Maflab 1.61 % +0.0 %
15 A Ruby 112 % +02 %
16 T VBA 1.08 % -0.1%
17 Ada 0.96 % +0.2 %
18 A Dart 0.85 % +0.4%
19 J Scala 0.69 % -0.0 %
20 A Lua 0.65 % +0.3%
21 el Wisual Basic 0.57 % -0.1%
2 drd Abap 0.55 % +0.1%
23 i Perl 0.53 % +0.1%
24 Groovy 036 % +0.0 %
25 Cobol 0.33 % +0.0 %

26 Haskell 0.25% +0.0 %

The long term trends (2000 ~ 2012) for
gg;;f;; the top 10 programming languages

JUSTICE

Tiobe Programming Community Index

ZIN N SR

| AN
| A i e ; % ke

2002 2003 2004 2005 2008 2007 2008 2000 2010 2011 2012
Time

(L]

MNormalized fraction of total hits (%)

o o
o n

e
n

2
o

— Javg == C++ == Objective-C (Visual) Basic Perl
-—C —-—C# PHP ~ Python — JavaScript

B The long term trends for the top 10 "
guuse programming languages

TIOBE Programming Community Index

Source: www tiobe.com
30

25

20

Ratings (%)
=73
&
»
S r
S
®
&
3
{-r
S5

T T
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

== Python e= C = C++ == Java == C# == JavaScript == Visual Basic == SOL PHP MATLAB

Reasons for Studying Concepts of
Programming Languages

CRIMINAL
JUSTICE

e Increased ability to express ideas

e Improved background for choosing appropriate languages

e Increased ability to learn new languages

e Better understanding of significance of implementation

e Better use of languages that are already known

e Overall advancement of computing

ix Programming Domains

OF
CRIMINAL
JUSTICE

e Scientific applications
— Large number of floating point computations
— Use of arrays
— Fortran
e Business applications
— Produce reports, use decimal numbers and characters
— COBOL

e Atrtificial intelligence
— Symbols rather than numbers manipulated
— Use of linked lists
— LISP

e Systems programming
— Need efficiency because of continuous use
- C

e Web Software

— Eclectic collection of languages: markup (e.g., XHTML), scripting
(e.g., PHP), general-purpose (e.g., Java)

13

14

Interesting links

COLLEGE
OF
CRIMINAL
JUSTICE

e How to shoot yourself in the foot with languages?
— http://www-users.cs.york.ac.uk/~susan/joke/foot.htm

e ACM “Hello World” project
— http:/lwww?2.latech.edu/~acm/HelloWorld.html

e 99 bottles of beer
—http://web.mit.edu/kenta/www/two/beer.html

e The Great Computer Language Shootout — A collection of
benchmarks performed on many languages

— http://dada.perl.it/shootout/

e Scripting: Higher Level Programming for the 21st Century
— http://www.tcl.tk/doc/scripting.html

http://www-users.cs.york.ac.uk/~susan/joke/foot.htm
http://www2.latech.edu/~acm/HelloWorld.html
http://web.mit.edu/kenta/www/two/beer.html
http://dada.perl.it/shootout/
http://www.tcl.tk/doc/scripting.html

Language Evaluation Criteria

Readability: the ease with which programs can be
read and understood

Writability: the ease with which a language can be
used to create programs

Reliability: conformance to specifications
— e.g., performs to its specifications

Cost: the ultimate total cost

15

ix Evaluation Criteria: Readability

F
CRIMINAL
JUSTICE

e Overall simplicity
— A manageable set of features and constructs

— Few feature multiplicity
— Less means of doing the same operation

— Minimal operator overloading

e Orthogonality

— Arelatively small set of primitive constructs can be combined in a
relatively small number of ways

— Every possible combination is legal

e Control statements

— The presence of well-known control structures
— e.g., while statement

e Data types and structures

— The presence of adequate facilities for defining data types and
structures

16

COLLEGE
OF
CRIMINAL

JUSTICE

Evaluation Criteria: Readability (Continued)

Syntax considerations

|dentifier forms: flexible composition
Special words and methods of forming compound statements
Form and meaning: self-descriptive constructs, meaningful keywords

17

18

ix Evaluation Criteria: Writability

OF
CRIMINAL
JUSTICE

e Simplicity and orthogonality

— Few constructs, a small number of primitives, a small set of
rules for combining them

e Support for abstraction

— The abllity to define and use complex structures or
operations in ways that allow details to be ignored

e EXpressivity

— A set of relatively convenient ways of specifying operations
—e.g., theinclusion of for statementin many modernlanguages

ix Evaluation Criteria: Reliability

OF
CRIMINAL
JUSTICE

Type checking
— Testing for type errors

Exception handling
— Intercept run-time errors and take corrective measures

Aliasing
— Presence of two or more distinct referencing methods for the same
memory location

Readability and writability

— A language that does not support “natural” ways of expressing an
algorithm will necessarily use “unnatural” approaches, and hence
reduced reliability

20
Evaluation Criteria: Cost

Training programmers to use the language

Writing programs (closeness to particular
applications)

Compiling programs
Executing programs

Language implementation system: availability of free
compilers

Reliability: poor reliability leads to high costs
Maintaining programs

21

ix Evaluation Criteria: Others

JUSTICE

e Portability

— The ease with which programs can be moved from one
Implementation to another

o Generality
— The applicability to a wide range of applications

e Well-definedness

— The completeness and precision of the language’s official
definition

22

ix Influences on Language Design

OF
CRIMINAL
JUSTICE

e Computer Architecture

— Languages are developed around the prevalent computer
architecture, known as the Von Neumann architecture

e Programming Methodologies

— New software development methodologies (e.g., object-
oriented software development) led to new programming
paradigms and by extension, new programming languages

COLLEGE
OF
CRIMINAL
JUSTICE

Computer Architecture Influence

Well-known computer architecture: Von Neumann

Imperative languages, most dominant, because of von
Neumann computers

— Data and programs stored in memory

— Memory is separate from CPU

— Instructions and data are piped from memory to CPU

— Basis for imperative languages
— Variables model memory cells
— Assignment statements model piping
— lteration is efficient

23

24
The Von Neumann Architecture

COLLEGE
OF
CRIMINAL
JUSTICE

Memory (stores both instructions and data)

A
Results of Instructions and data
operations
Y
Arithmetic and Control _
logic unit < unit ~—> Input and output devices

Central processing unit

COLLEGE
OF
CRIMINAL
JUSTICE

The Von Neumann Architecture

Fetch-execute-cycle (on a Von Neumann architecture
computer)

initialize the program counter

repeat forever
fetch the instruction pointed by instruction counter

increment the counter

decode the instruction
execute the instruction

end repeat

25

Von Neumann Bottleneck

e Connection speed between a computer's memory
and its processor determines the speed of a
computer

e Program instructions often can be executed a lot
faster than the above connection speed; the
connection speed thus results in a bottleneck

e Known as Von Neumann bottleneck; it is the
primary limiting factor in the speed of computers

35

iR Programming Methodologies Influences

CRIMINAL
JUSTICE

e 1950s and early 1960s
— Simple applications
— worry about machine efficiency
— Assembly and Fortran Languages

Before: numbers After: Symbols
55 ged: pushl %ebp
89ES5 movl %esp, %ebp
8B4508 movl 8(%ebp), %eax
8B550C movl 12(%ebp), %edx
3900 cmpl %edx, %eax
740D je .19
39D0 .L7: cmpl %edx, %eax
7E08 jle .15
2900 subl %edx, %eax
gggg .L2: cmpl %edx, %eax
i .17 i
co [Before After: Expressions, control-flow
c3 ret d: hl %eb i
Socn] ged: pus ebp 10 if (a .EQ. b) goto 20
e -L5: ?:';1 %ng e movl %esp, %ebp if (a .LT. b) ghen
movl 8(%ebp), %eax a=a-b»b
movl 12(%ebp), %edx else
cmpl %edx, %eax b=b-a
je .L9 endif
.L7: cmpl %edx, %eax goto 10
jle L5 20 end
subl %edx, %eax

.12: cmpl %edx, %eax
jne L7

.L9: leave
ret

.L5: subl %eax, %edx
jmp .L2

COLLEGE
OF
CRIMINAL
JUSTICE

Late 1960s

Programming Methodologies Influences

— People efficiency became important

— readability, better control structures
— structured programming

— top-down design and step-wise refinement

Programming for the masses

10 PRINT "GUESS A NUMBER BETWEEN ONE AND TEN"
20 INPUT A$

30 IF A% <> "5" THEN GOTO 60

40 PRINT "GOOD JOB, YOU GUESSED IT"

50 GOTO 100

60 PRINT "YOU ARE WRONG. TRY AGAIN"

70 GOTO 10

100 END

Efficiency for systems programming

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;
}

return a,

}

—

26

Programming Methodologies Influences

COLLEGE

OF
CRIMINAL
JUSTICE

Late 1970s:

— Process-oriented to data-oriented
— data abstraction

Middle 1980s: Object-oriented programming
— Data abstraction + Inheritance + Polymorphism

Procedural Oriented Object
Programming Oriented Programming

Lo)

Functions

Function | Function 2 Function 3

Local Local Local
Data Data : Data

Comparing procedural vs object-oriented programming. Source: Sakpal 2018.* ©

26

Language Categories

COLLEGE
OF

CRIMINAL
JUSTICE

Imperative
— Central features are variables, assignment statements, and iteration
— Include languages that support object-oriented programming
— Include script languages and visual languages
— Examples: C, C++, Java, Perl, JavaScript, Visual Basic, etc

Functional

— Main means of making computations is by applying functions to given parameters
— Examples: LISP, ML, Scheme

Logic
— Rule-based (rules are specified in no particular order)
— Example: Prolog

Object-oriented
— Data abstraction, inheritance, late binding
— Examples: Java, C++

Markup/programming hybrid
— Markup languages extended to support some programming
— Examples: JSTL, XSLT

27

ix Language Design Trade-Offs

OF
CRIMINAL
JUSTICE

e Reliablility vs. Cost of Execution
— Conflicting criteria

— Example: Java demands all references to array elements be checked
for proper indexing, which leads to increased execution costs

e Readability vs. Writability
— Another conflicting criteria

— Example: APL provides many powerful operators (and a large number
of new symbols), allowing complex computations to be written in a
compact program but at the cost of poor readability

o Writability (flexibility) vs. Reliability
— Another conflicting criteria

— Example: C++ pointers are very powerful and flexible but are
unreliable

28

Implementation Methods

CULLEGE

CRIMINAL
JUSTICE

e Compilation
— Programs are translated into machine language

SOVRCE CODE

©mrs-th.github.io

29

COLLEGE
OF
CRIMINAL
JUSTICE

Implementation Methods (Continued)

Pure Interpretation

— Programs are interpreted by another program known as an
interpreter

SOVRCE CODE

S =

RUN AGAIN

©mrs-th.github.io

29

COLLEGE
F

CRIMINAL
JUSTICE

ix : Implementation Methods (Continued)

e Hybrid Implementation Systems
— A compromise between compilers and pure interpreters
— Ex. Java Bytecode Interpreter

Source Program

i

Compiler

|
Bytecode

Input - Virtual Machine - Output

COLLEGE
OF
CRIMINAL
JUSTICE

Layered View of Computer

The operating system
and language
implementation are
layered over

Machine interface of a
computer

Virtual
C++ computer

Virtual
LISP
computer

Virtual
FORTRAN
computer

LISP
interpreter

FORTRAN

Operating system
compiler

Operating
system

command
interpreter

Macroinstruction
interpreter

Bare
machine

Assembler
Virtual C
computer

Ada
compiler

Virtual

assembly

language

Virtual computer
Ada

computer

30

COLLEGE
OF
CRIMINAL
JUSTICE

Compilation

e Translate high-level program (source language) into machine code
(machine language)

e Slow translation, fast execution

e Compilation process has several phases:

lexical analysis: converts characters in the source program into lexical
units

syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

semantics analysis: generate intermediate code
code generation: machine code is generated

31

CRIMINAL

ix The Compilation Process

JUSTICE

Source
program

Lexical
analyzer

Lexical units

Syntax
analyzer

Parse trees

Intermediate
Symbol code generator I)
table (and semantic Optimization (optional)

analyzer)

Y
Y

Intermediate
code

Code
generator

Y

Machine

|anguagi/— Input data

Computer

l

Results

Additional Compilation Terminologies

e Load module (executable image): the user and
system code together

e Linking and loading: the process of collecting
system program and linking them to user program

33

factorial.c

Compile Time

COLLEGE
OF
CRIMINAL
JUSTICE

Lexing —— Parsing ="

Code
generation

| Optimization

int factorial(int n)
if (n == @) {
return 1;

}

return n * factorial(n - 1);

{

factorial
.out

clang

Compilation Takes Time...

factorial

.out

CPU
Execute

_factorial:

efactorial

.cfi_startproc

#4 %bb.0:
push

rbp

.cfi_def_cfa_offset 16
.cfi_offset rbp, -16

mov

rbp, rsp

.cfi_def_cfa_register rbp

sub
moy
cmp
jne
#4 %bb.1:
mov
jmp
LBBB_2:
mov
moyv

.cfi_en

rsp, 16

dword ptr [rbp - 8], edi
dword ptr [rbp - 8], ©
LBBO_2

dword ptr [rbp - 4], 1
LBBG_3

eax, dword ptr [rbp - 8]

ecx, dword ptr [rbp - 8]

ecx, 1

edi, ecx

dword ptr [rbp - 12], eax ## 4-byte Spill
_factorial

ecx, dword ptr [rbp - 12] ## 4-byte Reload
ecx, eax

dword ptr [rbp - 4], ecx

eax, dword ptr [rbp - 4]
rsp, 16

rbp

dproc

32

Compilation Overhead

COLLEGE

OF
CRIMINAL
JUSTICE

Compilers are hard to write

Compilation process can be quite slow

Hard to port to different CPU architectures

Machine code is not efficiently distributable. Binaries have to be FAT to work
on multiple architectures.

Hard to port to different operating systems.
o OS’s have different binary executable formats, environments, runtimes, syscalls
o e.g Mach-O on OSX/iOS. EXE on Windows, ELF on linux

Slower development cycle.

32

Pure Interpretation

COLLEGE

OF

CRIMINAL
JUSTICE

No translation

Easier implementation of programs
— run-time errors can be easily and immediately displayed

Slower execution
— 10 to 100 times slower than compiled programs

Often requires more space
Now rare for traditional high-level languages

Significant comeback with some Web scripting languages
— e.g., JavaScript, PHP

36

COLLEGE
OF
CRIMINAL
JUSTICE

Pure Interpretation Process

Source
program

|

Interpreter

|

Results

/ Input data

37

COLLEGE

OF
CRIMINAL
JUSTICE

def factorial(n):
if n ==
return 1
else:

return n * factorial(n - 1)

factorial(10)

Pure Interpretation Process

$ python factorial.py
3628800

37

ix How Interpreter Works?

F
CRIMINAL
JUSTICE

“(42/3) +75*-2”

\ Lex and
Parse
/ +

42 3 75

Source code is portable. “Write once, run everywhere”

Host just needs to have an interpreter available.

EASY TO WRITE

“Compilation” is faster. Mainly cos there’s no code generation/optimization
steps.

COLLEGE
OF
CRIMINAL
JUSTICE

Performance of Interpreter Bad...

“X + 5"
Compiled
add edi, 5
mov gword ptr [rbp - 16], rdi
mov rdi, qword ptr [rbp - 16]
mov eax, dword ptr [rdi]
mov edi, eax
mov rex, rdi
sub rcx, 8
mov gword ptr [rbp - 32], rdi ## B8-byte Spill
mov qword ptr [rbp - 48], rcx ## B-byte Spill
ja LBBB_16
%bb.18:
lea rax, [rip + LJTIO_0]
mov rcx, qword ptr [rbp - 32] ## 8-byte Reload
movsxd rdx, dword ptr [rax + 4*rcx]
add rdx, rax
jmp rdx
LBBO_1:
mov rax, gword ptr [rbp - 16]
mov rax, gword ptr [rax + 8]
mov ecx, dword ptr [rax]

Interpreted

Lexing

l

Parsing

l

Execute

dword ptr [rbp - 4],

Jmp
La:
mov
mov
mov
jmp
3. 3:
mov
mov
call
mov
mov
mov
call
mov
mov
mov
add
mov
sub

mov

LBBB_4:

mov
add
mov
jmp

LBBO_17

rax, qword ptr

ecx, dword ptr

dword ptr [rbp -

LBBO_17

rax, qword ptr

rdi, qword ptr

ecx
[rbp - 16]
[rax + 8]
4], ecx
[rbp - 16]
[rax + 8]

_executeIntExpression

dword ptr [rbp -

rdi, qword ptr
rdi, qword ptr

28], eax
[rbp - 16]
[rdi + 16]

_executeIntExpression

dword ptr [rbp -

rdi, qword ptr
eax, dword ptr

eax, -2
edi, eax
eax, 3

gword ptr [rbp

eax, dword ptr
eax, dword ptr
dword ptr [rbp
LBBB_17

24], eax
[rbp 16]
[rdi]

- 48], rdi

[rbp - 28]
[rbp - 24]
- 4], eax

8-byte Spill

37

ix Hybrid Implementation Systems

F
CRIMINAL
JUSTICE

e A compromise between compilers and pure interpreters

e A high-level language program is translated to an
Intermediate language that allows easy interpretation

e Faster than pure interpretation

e Examples

— Perl programs are partially compiled to detect errors before
interpretation

— Initial implementations of Java were hybrid; the intermediate form, byte
code, provides portability to any machine that has a byte code
Interpreter and a run-time system (together, these are called Java
Virtual Machine)

38

Hybrid Implementation Process

Source
program

Y

COLLEGE
OF
CRIMINAL
JUSTICE

Lexical
analyzer

Lexical units

Y

Syntax
analyzer

Parse trees

Y

Intermediate
code generator

Intermediate

code
/ Input data

Interpreter

Results

40
Just-in-Time Implementation Systems

Initially translate programs to an intermediate
language

Then compile intermediate language into machine
code

Machine code version is kept for subsequent calls
JIT systems are widely used for Java programs

NET languages are implemented with a JIT system

COLLEGE

OF

CRIMINAL
JUSTICE

Just-in-Time Implementation Systems

Source Program

i

Compiler

!

Bytecode

Just-in-time Compiler

Input

4

Machine Code

L

Output

40

COLLEGE
0

F
CRIMINAL
JUSTICE

Language Speeds Compared

Native code compilers

ATS -—— e L _

C++ GNU g=+ = BT

cam) pet — Just-in-time compilers
java & steady state = == Bytecode interpreters
fda X005 GMAT = -

Haskell GHE —

Scala —l I —

lava & =pryer —l

Lua LuallT — N —

Fartran Intel — .

Clean —

CHCaml]l I—

Fi¥ Mano —

C& Mono —

Pascal Free Pazcal =

Go 6g Bg ——

Racket — —

Lisp SBCL — N B

lavasScript VB S

Erlang HiPE —

Lua i —

smalltalk Visual'Warks =

Java & -Kint -

Python CPython — I N —

Pythan 3 Y

Ruby 1.9 —
hMozartidz A ————

Ruby JRuby —
PHP T
Perl — R

Source: httpuishootout.alioth.debian.orgf

40

Preprocessors

COLLEGE
OF
CRIMINAL
JUSTICE

e Preprocessor macros (instructions) are commonly used
to specify that code from another file is to be included

e A preprocessor processes a program immediately
before the program is compiled to expand embedded

preprocessor macros

e A well-known example: C preprocessor
— expands #include, #define, and similar macros

41

iR Programming Environments

F
CRIMINAL
JUSTICE

e The collection of tools used in software development

e UNIX
— An older operating system and tool collection

— Nowadays often used through a GUI (e.g., CDE, KDE, or
GNOME) that run on top of UNIX

e Borland JBuilder
— An integrated development environment for Java

e Microsoft Visual Studio.NET

— Alarge, complex visual environment
— Used to program in C#, Visual BASIC.NET, Jscript, J#, and C++

Summary

COLLEGE
OF
CRIMINAL
JUSTICE

The study of programming languages is valuable for a number of
reasons:

— Increase our capacity to use different constructs
— Enable us to choose languages more intelligently
— Makes learning new languages easier

Most important criteria for evaluating programming languages
Include:

— Readability, writability, reliability, cost

Major influences on language design have been machine
architecture and software development methodologies

The major methods of implementing programming languages
are: compilation, pure interpretation, and hybrid implementation

43

44

ix Homework

¢ Homework submission should follow schedule on the class
homepage

e Read articles introduced in this lecture

— Scripting: Higher Level Programming for the 21st Century
— http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/scriptHistory.pdf

— Who is John Von Neumann
— http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/VonNeumann.pdf

http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/scriptHistory.pdf
http://jjcweb.jjay.cuny.edu/jwkim/class/csci374-spring-25/VonNeumann.pdf

