- 13. Explain the primary uses of a methodology and notation for describing the semantics of programming languages.
- 14. Why can machine languages not be used to define statements in operational semantics?
- 15. Describe the two levels of uses of operational semantics.
- 16. In denotational semantics, what are the syntactic and semantic domains?
- 17. What is stored in the state of a program for denotational semantics?
- 18. Which semantics approach is most widely known?
- 19. What two things must be defined for each language entity in order to construct a denotational description of the language?
- 20. Which part of an inference rule is the antecedent?
- 21. What is a predicate transformer function?
- 22. What does partial correctness mean for a loop construct?
- 23. On what branch of mathematics is axiomatic semantics based?
- 24. On what branch of mathematics is denotational semantics based?
- 25. What is the problem with using a software pure interpreter for operational semantics?
- 26. Explain what the preconditions and postconditions of a given statement mean in axiomatic semantics.
- 27. Describe the approach of using axiomatic semantics to prove the correctness of a given program.
- 28. Describe the basic concept of denotational semantics.
- 29. In what fundamental way do operational semantics and denotational semantics differ?

PROBLEM SET

- The two mathematical models of language description are generation and recognition. Describe how each can define the syntax of a programming language.
- 2. Write EBNF descriptions for the following:
 - a. A Java class definition header statement
 - b. A Java method call statement
 - c. A C switch statement
 - d. A C union definition
 - e. C float literals
- 3. Rewrite the BNF of Example 3.4 to give + precedence over * and force + to be right associative.

- 4. Rewrite the BNF of Example 3.4 to add the ++ and -- unary operators of Java.
- 5. Write a BNF description of the Boolean expressions of Java, including the three operators &&, | |, and ! and the relational expressions.
- 6. Using the grammar in Example 3.2, show a parse tree and a leftmost derivation for each of the following statements:

a.
$$A = A * (B + (C * A))$$

b.
$$B = C * (A * C + B)$$

c.
$$A = A * (B + (C))$$

7. Using the grammar in Example 3.4, show a parse tree and a leftmost derivation for each of the following statements:

a.
$$A = (A + B) * C$$

$$b. A = B + C + A$$

$$C. A = A * (B + C)$$

$$d. A = B * (C * (A + B))$$

8. Prove that the following grammar is ambiguous:

$$\langle S \rangle \rightarrow \langle A \rangle$$

$$\langle A \rangle \rightarrow \langle A \rangle + \langle A \rangle \mid \langle id \rangle$$

$$\langle id \rangle \rightarrow a \mid b \mid c$$

- 9. Modify the grammar of Example 3.4 to add a unary minus operator that has higher precedence than either + or *.
- 10. Describe, in English, the language defined by the following grammar:

$$\langle S \rangle \rightarrow \langle A \rangle \langle B \rangle \langle C \rangle$$

$$\langle A \rangle \rightarrow a \langle A \rangle | a$$

$$\langle B \rangle \rightarrow b \langle B \rangle | b$$

$$\langle C \rangle \rightarrow c \langle C \rangle | c$$

11. Consider the following grammar:

$$\langle S \rangle \rightarrow \langle A \rangle$$
 a $\langle B \rangle$ b

$$\langle A \rangle \rightarrow \langle A \rangle b \mid b$$

$$\langle B \rangle \rightarrow a \langle B \rangle \mid a$$

Which of the following sentences are in the language generated by this grammar?

- a. baab
- b. bbbab
- c. bbaaaaa
- d. bbaab

12. Consider the following grammar:

$$\langle S \rangle \rightarrow a \langle S \rangle c \langle B \rangle | \langle A \rangle | b$$

$$\rightarrow c \mid c$$

$$\langle B \rangle \rightarrow d \mid \langle A \rangle$$

Which of the following sentences are in the language generated by this grammar?

- a. abcd
- b. accebd
- c. accebec
- d. acd
- e. accc
- 13. Write a grammar for the language consisting of strings that have n copies of the letter a followed by the same number of copies of the letter b, where n > 0. For example, the strings ab, aaaabbbb, and aaaaaaaaabbbbbbbb are in the language but a, abb, ba, and aaabb are not.
- 14. Draw parse trees for the sentences aabb and aaaabbbb, as derived from the grammar of problem 13.
- 15. Convert the BNF of Example 3.1 to EBNF.
- 16. Convert the BNF of Example 3.3 to EBNF.
- 17. Convert the following EBNF to BNF:

$$S \rightarrow A \{ bA \}$$

$$A \rightarrow a [b]A$$

- 18. What is the difference between an intrinsic attribute and a nonintrinsic synthesized attribute?
- 19. Write an attribute grammar whose BNF basis is that of Example 3.6 in Section 3.4.5 but whose language rules are as follows: Data types cannot be mixed in expressions, but assignment statements need not have the same types on both sides of the assignment operator.
- 20. Write an attribute grammar whose base BNF is that of Example 3.2 and whose type rules are the same as for the assignment statement example of Section 3.4.5.
- 21. Using the virtual machine instructions given in Section 3.5.1.1, give an operational semantic definition of the following:
 - a. Java do-while
 - b. Ada for
 - c. C++ if-then-else
 - d. C for
 - e. C switch

- 22. Write a denotational semantics mapping function for the following statements:
 - a. Ada for
 - b. Java do-while
 - c. Java Boolean expressions
 - d. Java for
 - e. C switch
- 23. Compute the weakest precondition for each of the following assignment statements and postconditions:

a.
$$a = 2 * (b - 1) - 1{a > 0}$$

b.
$$b = (c + 10) / 3\{b > 6\}$$

c.
$$a = a + 2 * b - 1 \{a > 1\}$$

d.
$$x = 2 * y + x - 1 \{x > 11\}$$

24. Compute the weakest precondition for each of the following sequences of assignment statements and their postconditions:

a.
$$a = 2 * b + 1;$$

$$b = a - 3$$

$$\{b < 0\}$$

b.
$$a = 3 * (2 * b + a);$$

$$b = 2 * a - 1$$

$$\{b > 5\}$$

25. Compute the weakest precondition for each of the following selection constructs and their postconditions:

$$b = 2 * a + 1$$

else

$$b = 2 * a;$$

$$\{b > 1\}$$

b. if
$$(x < y)$$

$$x = x + 1$$

else

$$x = 3 * x$$

$$\{x < 0\}$$

c. if
$$(x > y)$$

$$y = 2 * x + 1$$

else

$$y = 3 * x - 1;$$

$${y > 3}$$

- 26. Explain the four criteria for proving the correctness of a logical pretest loop construct of the form ${\tt while}\ B\ {\tt do}\ S\ {\tt end}$
- 27. Prove that (n + 1) * ... * n = 1
- 28. Prove the following program is correct:

```
{n > 0}
count = n;
sum = 0;
while count <> 0 do
    sum = sum + count;
    count = count - 1;
end
{sum = 1 + 2 + ... + n}
```