rameters?

gram protocol?
parameters?
keyword parameters
in the language itself
and a procedure?

dynamic local variables static local variables to be nested? ter passing? transfer, the advantage result, pass-by-value, methods? pass-by-reference

l C and C89 deal with

g implementors to describe to pass by value-results for parameter-passing

ned arrays as parameter hod used in Python and

gram names are

nvironments of sub-

intiated? eters to a Java 5.0 general

type of object is actual

- 31. If a Java 5.0 generic method is called with three different generic parameters, how many versions of the method will be generated by the compiler?
- 32. What are the design issues for functions?
- 33. What two languages allow multiple values to be returned from a function?
- 34. What languages allow the user to overload operators?
- 35. In what ways are coroutines different from conventional subprograms?

PROBLEM SET

- 1. What are arguments for and against a user program building additional definitions for existing operators, as can be done in Ada and C++? Do you believe such user-defined operator overloading is good or bad? Support your answer.
- 2. In most Fortran IV implementations, parameters were passed by reference, using access path transmission only. State both the advantages and disadvantages of this design choice.
- 3. Argue in support of the Ada 83 designers' decision to allow the implementor to choose between implementing **in out** mode parameters by copy or by reference.
- 4. Suppose you wish to write a method that prints a heading on a new output page, along with a page number that is 1 in the first activation and that increases by 1 with each subsequent activation. Can this be done without parameters and without reference to nonlocal variables in Java? Can it be done in C#?
- 5. Consider the following program written in C syntax:

```
void swap(int a, int b) {
   int temp;
   temp = a;
   a = b;
   b = temp;
}
void main() {
   int value = 2, list[5] = {1, 3, 5, 7, 9};
   swap(value, list[0]);
   swap(list[0], list[1]);
   swap(value, list[value]);
}
```

For each of the following parameter-passing methods, what are all the values of the variables value and list after each of the three courses to swap?

- a. Passed by value
- b. Passed by reference
- c. Passed by value-result
- 6. Present one argument against providing both static and dynamic local variables in subprograms.
- 7. Consider the following program written in C syntax:

```
void fun (int first, int second) {
  first += first;
  second += second;
}
void main() {
  int list[2] = {1, 3};
  fun(list[0], list[1]);
}
```

For each of the following parameter-passing methods, what are the value of the list array after execution?

- a. Passed by value
- b. Passed by reference
- c. Passed by value-result
- 8. Argue against the C design of providing only function subprograms.
- 9. From a textbook on Fortran, learn the syntax and semantics of statement functions. Justify their existence in Fortran.
- 10. Study the methods of user-defined operator overloading in C++ and Ada and write a report comparing the two using our criteria for evaluating languages.
- 11. C# supports out-mode parameters, but neither Java nor C++ does. Give an explanation of this difference.
- 12. Research Jensen's Device, which was a widely known use of pass-by-name parameters, and write a short description of what it is and how it can be used.
- 13. Study the iterator mechanisms of Ruby and CLU and list their similarities and differences.
- 14. Speculate on the issue of allowing nested subprograms in programming languages—why are they not allowed in many contemporary languages.
- 15. What are at least two arguments against the use of pass-by-name parameters?
- 16. Write a detailed comparison of the generic subprograms of Java 5.0 and C# 2005.