Which language is right for you? http://www.itworld.com/print/36979

WORLD

AN OPEN EXCHANGE

From: www.itworld.com

Which language is right for you?
by Cameron Laird and Kathryn Soraiz

March 15, 2001 —Pick the language with which you're most comfortable. That's our advice to reader John
Wiersba, who asked us several weeks ago where he should concentrate his study.

Selection principles

For the most part, Regular Expressions concentrates on general principles or concepts that are likely to apply
to several scripting languages: inter-process communication, character encodings, graphical toolkit bindings,
concurrency, and so on. Three and a half years ago, though, we did a feature article, "Choosing a scripting
language,"” when Unix Insider was still
SunWorld. It's time to update that piece.

Wiersba's question is a good one. He wants
to make the most of his education and
experience, so he's looking for a language
that won't limit him. Rather than learn
several poorly, he's out to concentrate on
one and get to know it well. Which one
deserves his time and attention?

Get the white paper.

The technical capabilities of most of the
popular modern scripting languages have
converged remarkably, even over the three
years that we've been writing Regular
Expressions. You can largely expect to be
able to do the same things with Perl, PHP,
Python, Rexx, Scheme, Tcl, and other such
languages: script dynamic Webpages, build
administrative utilities, prototype graphical user interface applications, glue together legacy data and processes,
and so on. You can code in procedural, object-oriented, or functional styles. You can expect to be able to run
your scripts on Mac OS, Unix, or Windows. You can manage other processes, and script Java and COM objects.
You have limited access to hardware such as serial ports, but you can extend built-in capabilities with C or other
languages. Internationalization is possible and often practical. You can freely reuse any of a staggering number
of modules other programmers have written.

Therefore, our first answer is to use what feels comfortable to you. If Python's use of white space makes your
skin crawl, learn Ruby instead. If you want to get along with your coworkers without having to explain your Tcl or
Forth mentality, you might find them ready to accept Perl or Pike. You'll be able to create roughly the same
functionality no matter which language you use.

Collect your own data, talk to the natives

The successes in language choice are often instances in which a programmer gets along well with the other
natives. What's most important about Perl is probably not the syntax of the language or its constellation of
command-line arguments, but the cultural system of the Comprehensive Perl Archive Network (CPAN) --
maintained perldocs, good conferences, local PerlMonger meetings, and so on -- that makes practitioners feel
they've found a home.

One of the most pleasant aspects common to these languages is that you can take them out for a spin
inexpensively. Locating a language processor and documentation, downloading them to a host you control, and
writing your first sample program usually fits within a conventional lunch break. There are extensive online
information archives available for all these languages. Rather than flip a coin or trust an expert to decide, you can

10of2 8/13/2009 5:27 PM



Which language is right for you? http://www.itworld.com/print/36979

quickly acquire your own sense of how different languages work.

Each language does have limits. Their analysis, though, has become exceedingly arcane. Advanced use of
Python, for example, rests crucially on its aesthetic for introspection and its promotion of metaprogramming. Is
that the right approach for you? There's almost no adequate way to judge this without the subtle understanding of
you and your work that no one else is likely to have.

Still, we can give you a starting point. If you follow one of our recommendations, and it takes two years to find out
that another choice would have been better, we'll feel successful.

Scouting notes

Here's what we think about the leading portable scripting languages:

Perl: Perl outranks all the others quantitatively. More job seekers claim Perl experience, and more companies
advertise its use, than all the others combined. Perl is powerful, but not easy. Perl is ubiquitous in Web work and
Unix system administration. Greatest liability: extending Perl with C is tedious, and with Java an adventure.

Python: Python's grown rapidly over the last couple of years. Python has no particular weaknesses: It's a great
language for beginners, it's a great language for large projects and teamwork, and it enjoys a breathtaking array
of convenient accessories. Python is the one language with which we feel safe in recommending for all situations.
It's the market leader in several areas outside the United States. It's a good, clean language, and many important
applications have already been written with Python. Greatest liability: Tkinter is slow for some applications.

REBOL: REBOL gives good multipliers. Inexperienced programmers do powerful things with it quickly, but it has
enough substance to be satisfying for professionals. If you specialize in the kinds of network-aware applications
REBOL now seems to be targeting (e-communications and e-commerce), consider this language. Greatest
liability: it's a proprietary product. This is also an asset, in some situations, of course.

Ruby: Ruby's growth rate in the last year has been even greater than Python's, although from a smaller base.
Like Python, it's won over many former Perl programmers looking for stronger object orientation or a cleaner
language. Ruby is tops in Japan, where it was invented. Greatest liability: there's a lot left to write, including GUI
bindings, Web modules, packagers, and many specialized libraries.

Tcl: It's a mystery to us and to several companies in the business why Tcl's buzz has quieted. Book sales have
fallen off dramatically, and new programmers show little interest in it. Tcl and its extensions are indispensable in
numerous areas of computing, though, and the languages will be actively used and developed for a long time to
come. Tcl is a bit of an outlier syntactically: while those outside computing often take to it, as a language it
doesn't feel nearly as close to C and Java as do Perl and even Python. One of the benefits of this strangeness is
that piping and T CP-level networking are much easier with Tcl than with the other languages. Greatest liabilities:
inadequately documented Win* interfaces, including COM, and faltering Mac OS support.

We have a lot of affection for plenty of other languages, including Forth, Smalltalk, Scheme, PHP, and Eiffel. The
ones above, though, dominate our correspondence. For more details, see the references in the resources below.
We particularly welcome reports of your own experiences in the forum we
moderate.

Unix Insider

2 of 2 8/13/2009 5:27 PM



