
Introduction to Functional Programming  
The functional language community  

The functional language community is excessively dour. The functional ascetics forbid 
themselves facilities which less pious programmers regard as standard . When using 
functional languages we do away with notions such as variables and reassignments. This 
allows us to define programs which may be subjected to analysis much more easily. 
When a value is assigned it does not change during the execution of the program. This 
property is referential transparency. There is no state corresponding to the global 
variables of a traditional language or the instances of objects in an object oriented 
language. When a definition is made it sticks. Reassignment does not take place. Getting 
used to this and finding alternatives the traditional structures such as loops which require 
reassignment is one of the hardest tasks for a programmer "converting" from a traditional 
language. The line  
x := x+1; 
may appear in a 3rd generation language and is understood to indicate that 'box' or 
'location' referred to as 'x' has its contents incremented at this stage. We do not admit 
such concepts. 'x' is 'x' and 'x+1' is one more than x; the one may not be changed into the 
other. A program without a state is a simpler thing - it is easier to write the code and 
easier to reason about the code once written. It is harder to write poor code.  

Functional languages are considered, by their devotees, to be higher level than third 
generation languages. Functional languages are regarded as declarative rather than 
imperative. Ordinary third generation languages such as Pascal, C (including flavours 
such as C++) and assembly instruct the computer on how to solve a problem. A 
declarative language is one which the programmer declares what the problem is; the 
execution of the program is a low level concern. This is an attitude shared with the logic 
language community (Prolog people).  

Towards Correct Programs  

There has been a great deal of progress in recent years in defining methodologies and 
design techniques which allow programs to be constructed more reliably. Some would 
claim that object orientation for example builds on and improves on structured 
programming which undoubtedly contributes to a better process of software construction. 
Using a rational methodology software engineers can produce better code faster - this is 
to be applauded, however it does not bring us any closer to the goal of correct programs. 
A correct program is not just more reliable - it is reliable. It does not just rarely go wrong 
- it cannot go wrong. The correct program should be the philosophers stone for the 
programmer, the pole star of our efforts. Software engineering may allow the intellectual 
effort of the programmer to be used "more efficiently" however it does not necessarily 
give us accurate programs.  

Away from testing  



Testing is usually regarded as an important stage of the software development cycle. 
Testing will never be a substitute for reasoning. Testing may not be used as evidence of 
correctness for any but the most trivial of programs. Software engineers some times refer 
to "exhaustive" testing when in fact they mean "exhausting" testing. Tests are almost 
never exhaustive. Having lots of tests which give the right results may be reassuring but it 
can never be convincing. Rather than relying on testing we should be relying in reasoning. 
We should be relying on arguments which can convince the reader using logic.  

The benefits and costs of correct programs  

If correct programs were cheap and easy then we would all use them. In fact the 
intellectual effort involved in proving the correctness of even the simplest of programs is 
immense. However the potential benefits of a cast iron guarantee on a program would be 
attractive in many situations. Certainly in the field of "safety-critical" systems formal 
methods may have a role to play. It must however be admitted that the safety of many 
such systems cannot be ensured by software - no amount of mathematics is going to 
make a weapons system or a complex chemical plant safe. Formal methods may have a 
useful part to play in systems where there is a high cost of failure - examples such as 
power stations, air traffic control and military systems come to mind. The cost of failure 
in any of these cases may be in terms of human life. The really important market for such 
systems is in fact in financial systems where the cost of failure is money itself.  

Why functional programming  

Functional languages such as ML, Hope and Lisp allow us to develop programs which 
will submit logical analysis relatively easily. Using a functional language we can make 
assertions about programs and prove these assertions to be correct. It is possible to do the 
same for traditional, imperative programs - just much harder. It is also possible to write 
programs in ML which defy logic - just much harder. A functional language like ML 
offers all of the features that we have come to expect from a modern programming 
language. Objects may be packaged with details hidden. Input and output tend to be 
rather more primitive then we might expect, however there are packages which allow ML 
to interface with front ends such as X-windows.  

Functional languages are particularly well suited to parallel processing - several research 
projects have demonstrated superior performance on parallel machines.  

Summary  

We compare Formal Methods and Functional Programming with some traditional 
Imperative Programming and traditional software engineering:  

 
Imperative Programming & 

Traditional Software 
Engineering 

Functional Programming & Formal 
Methods 

The Using informal language a Using logic we can state the 



Development 
Cycle 

specification may be open to 
interpretation. Using 
appropriate testing strategies we 
can improve confidence - but 
not in any measurable way.  

Mistakes/bugs are common and 
difficult to spot and correct.  

specification exactly. Using 
mathematics we may be able to prove 
useful properties of our programs.  

Mistakes/bugs are common and difficult 
to spot and correct.  

The 
Development 

Language 

Using structured programming 
or object oriented techniques we 
can reuse code. Using 
structured programming or 
object orientation we can 
partition the problem into more 
manageable chunks.  

Using structured programming or object 
oriented techniques we can reuse code. 
We can partition the problem into easy 
to use chunks - plus there are often 
"higher-level" abstractions which can be 
made ML which would be difficult or 
impossible in a traditional language.  

The Run-time 
System 

The compiler can produce fast 
compact code taking a fixed 
amount of memory. 
Parallel processing is not 
possible (in general). 
Fancy GUI's may be added.  

The memory requirements are large and 
unpredicatable. 
Parallel processing is possible. 
Fancy GUI's may be added, with 
difficulty.  

 
 

Introduction to ML  
This is aimed at students with some programming skills, but new to functional languages. 
It consists almost entirely of exercises and diversions; these are intended to be completed 
at a machine with at least some supervision. It is not intended to replace teaching. It will 
most likely be possible to copy text from the hyper text viewer (possibly Netscape or 
Mosaic) and paste it directly into a window in which ML is running thus saving at least 
some re-typing.  

Learning  
This document is an attempt to guide the student in learning rather than to present the 
syntax and theory in an ordered fashion. A considerable amount of time must be invested 
in learning a new language; with ML it's worth it.  

"Hello world"  
All of the following tutorial material has been developed for Standard ML. It has been 
used with New Jersey ML and Edinburgh ML but should work with any other version. 
The ML prompt is "-". Expressions typed in are immediately evaluated and usually 



displayed together with the resulting type. Expressions are terminated with ";" Using 
New Jersey ML the following dialogue might take place:  
- "Hello World"; 
val it = "Hello World" : string 
When used normally the ML accepts expressions and evaluates them. The result is 
printed to the screen together with the type of the result. The last result calculated may be 
referred to as it. In the example above the interpreter does not have to do any work to 
calculate the value of the expression entered - the expression is already in its simplest - or 
normal form. A trickier example would be the expression 3+4 this is evaluated to the 
value 7.  
- 3+4; 
it = 7 : int 
Notice that the expression to be evaluated is terminated by a semicolon. The interpreter 
allows expressions to go over more than one line. Where this happens the prompt 
changes to "=" for example:  
- 4 + 4 + 
= 4; 
val it = 12 : int 
  

Defining functions  
A function may be defined using the keyword fun. Simple function definitions take the 
form:  
fun   = ; 
For example  
fun double x = 2*x; 
fun inc x = x+1; 
fun adda s = s ^ "a"; 
These functions may be entered as above. To execute a function simply give the function 
name followed by the actual argument. For example:  
double 6; 
inc 100; 
adda "tub"; 
The system should give you the values 12: int and 101 : int and "tuba" : string 
for the expressions above. 
 

Types  
The basic types available are integer, real, string, char, boolean. From these we can 
construct objects using tuples, lists, functions and records, we can also create our own 
base types - more of this later. A tuple is a sequence of objects of mixed type. Some 
tuples:  
(2,"Andrew")    : int * string 
(true,3.5,"x")  : bool * real * string 
((4,2),(7,3))   : (int * int) * (int * int) 
While a tuple allows its components to be of mixed type and is of fixed length, a list must 
have identically typed components and may be of any length. Some lists:  
[1,2,3]                : int list 
["Andrew","Ben"]       : string list 



[(2,3),(2,2),(9,1)]    : (int * int) list 
[[],[1],[1,2]]         : int list list 
Note that the objects [1,2] and [1,2,3] have the same type int list but the objects 
(1,2) and (1,2,3) are of different types, int*int and int*int*int respectively. It is 
important to notice the types of objects and be aware of the restrictions. While you are 
learning ML most of your mistakes are likely to get caught by the type checking 
mechanism.  

Polymorphism  
Polymorphism allows us to write generic functions - it means that the types need not be 
fixed. Consider the function length which returns the length of a list. This is a pre-defined 
function. Obviously it does not matter if we are finding the length of a list of integers or 
strings or anything. The type of this function is thus  
length : 'a list -> int 
the type variable 'a can stand for any ML type.  

Bindings  
A binding allows us to refer to an item as a symbolic name. Note that a label is not the 
same thing as a variable in a 3rd generation language. The key word to create a binding is 
val. The binding becomes part of the environment. During a typical ML session you will 
create bindings thus enriching the global environment and evaluate expressions. If you 
enter an expression without binding it the interpreter binds the resulting value to it.  
- val a = 12; 
val a = 12 : int 
- 15 + a; 
val it = 27 : int 
  

Pattern Matching  
Unlike most other languages ML allows the left hand side of an assignment to be a 
structure. ML "looks into" the structure and makes the appropriate binding.  
- val (d,e) = (2,"two"); 
val d = 2 : int 
val e = "two" : string 
- val [one,two,three] = [1,2,3]; 
std_in:0.0-0.0 Warning: binding not exhaustive 
                one :: two :: three :: nil = ... 
val one = 1 : int 
val two = 2 : int 
val three = 3 : int 
Note that the second series of bindings does succeed despite the dire sounding warning - 
the meaning of the warning may become clear later.  

Lists  
The list is a phenomenally useful data structure. A list in ML is like a linked list in C or 
PASCAL but without the excruciating complexities of pointers. A list is a sequence of 
items of the same type. There are two list constructors, the empty list nil and the cons 



operator ::. The nil constructor is the list containing nothing, the :: operator takes an item 
on the left and a list on the right to give a list one longer than the original. Examples  
nil                     [] 
1::nil                  [1] 
2::(1::nil)             [2,1] 
3::(2::(1::nil))        [3,2,1] 
In fact the cons operator is right associative and so the brackets are not required. We can 
write 3::2::1::nil for [3, 2, 1]. Notice how :: is always between an item and a list. The 
operator :: can be used to add a single item to the head of a list. The operator @ is used to 
append two lists together. It is a common mistake to confuse an item with a list 
containing a single item. For example to obtain the list starting with 4 followed by [5,6,7] 
we may write 4::[5,6,7] or [4]@[5,6,7] however 4@[5,6,7] or [4]::[5,6,7] both break the 
type rules.  
::      : 'a * 'a list -> 'a list 
nil     : 'a list 
To put 4 at the back of the list [5,6,7] we might try [5,6,7]::4 however this breaks the type 
rules in both the first and the second parameter. We must use the expression [5,6,7]@[4] 
to get [5,6,7,4] 
 

Curry  
A function of more than one argument may be implemented as a function of a tuple or a 
"curried" function. (After H B Curry). Consider the function to add two integers Using 
tuples  
- fun add(x,y)= x+y : int; 
val add = fn int * int -> int 
The input to this function is an int*int pair. The Curried version of this function is 
defined without the brackets or comma:  
- fun add x y = x+y : int; 
val add = fn : int -> int -> int 
The type of this function is int->(int->int). It is a function which takes an integer and 
returns a function from an integer to an integer. We can give both arguments without 
using a tuple  
- add 2 3; 
it = 5 : int 
Giving one argument results in a "partial evaluation" of the function. For example,  
applying the function add to the number 2 alone results in a function which adds two to 
its input:  
- add 2; 
it = fn int-> int 
- it 3; 
it = 5 : int 
Curried functions can be useful - particularly when supplying function as parameters to 
other functions.  

Pattern Matching  



In the examples so far we have been able to define functions using a single equation. If 
we need a function which responds to different input we would use the if _ then _ else 
structure or a case statement in a traditional language. We may use if then else in ML 
however pattern matching is preferred. Example: To change a verb from present to past 
tense we usually add "ed" as a suffix. The function past does this.  

past "clean" = "cleaned" past "polish" = "polished" 
There are irregular verbs which must be treated as special cases such as run -> ran.  
fun past "run"  = "ran" 
|   past "swim" = "swam" 
|   past x      = x ^ "ed"; 
When a function call is evaluated the system attempts to match the input (the actual 
parameter) with each equation in turn. Thus the call past "swim" is matched at the second 
attempt. The final equation has the free variable x as the formal parameter - this will 
match with any string not caught by the previous equations. In evaluating past 
"stretch" ML will fail to match the first two equations - on reaching the last equation x 
is temporarily bound to "stretch" and the right hand side, x^"ed" becomes 
"stretch"^"ed" evaluated to "stretched".  

In the following examples we use exactly two patterns for our functions. The first pattern 
is the base case which is typically 0 or 1 the second is n which matches with all other 
numbers.  
A typical function takes the form:  

fun f(0) = ?? The equation used when the input is zero 
| f(n) = ?? The equation used when n is 1 or 2 or 3 ...

More on pattern matching later....  

Recursion  
Using recursive functions we can achieve the sort of results which would require loops in 
a traditional language. Recursive functions tend to be much shorter and clearer. A 
recursive function is one which calls itself either directly or indirectly. Traditionally, the 
first recursive function considered is factorial.  
n n!      Calculated as 
0 1 
1 1*0! = 1*1 = 1 
2 2*1! = 2*1 = 2 
3 3*2! = 3*2 = 6 
4 4*3! = 4*6 = 24 
5 5*4! = 5*24 = 120 
6 6*5! = 6*120 = 720 
7 7*6! = 7*720 = 5040 
... 
12 12*11*10*..2*1 = 479001600 
A mathematician might define factorial as follows 
0! = 1 



n! = n.(n-1)! for n>0 
Using the prefix factorial in place of the postfix ! and using * for multiplication we have  
fun factorial 0 = 1 
|   factorial n = n * factorial(n-1); 
This agrees with the definition and also serves as an implementation. To see how this 
works consider the execution of factorial 3. As 3 cannot be matched with 0 the second 
equation is used and we bind n to 3 resulting in  
factorial 3 = 3 * factorial(3-1) = 3*factorial(2) 
This generates a further call to factorial before the multiplication can take place. In 
evaluating factorial 2 the second equation is used but this time n is bound to 2.  
factorial 2 = 2 * factorial(2-1) = 2*factorial(1) 
Similarly this generates the call  
factorial 1 = 1 * factorial 0 
The expression factorial 0 is dealt with by the first equation - it returns the value 1. 
We can now "unwind" the recursion.  
factorial 0  = 1   
factorial 1  = 1 * factorial 0  = 1*1  = 1 
factorial 2  = 2 * factorial 1 = 2*1  = 2 
factorial 3  = 3 * factorial 2  = 3*2  = 6 
Note that in practice, execution of this function requires stack space for each call and so 
in terms of memory use the execution of a recursive program is less efficient than a 
corresponding iterative program.  

Take care  
It is very easy to write a non-terminating recursive function. Consider what happens if we 
attempt to execute factorial ~1 (the tilde ~ is used as unary minus). To stop a non 
terminating function press control C. Be warned that some functions consume processing 
time and memory at a frightening rate. Do not execute the function:  
fun bad x = (bad x)^(bad x); 
 
 

List processing and pattern matching  

sum of a list 

Consider the function sum which adds all the elements of a list.  
sum [2,3,1] = 2 + 3 + 1 = 6 
There are two basic patterns for a list - that is there are two list constructors, :: and nil. 
The symbol :: is called cons, it has two components, nil is the empty list We can write 
equations for each of these constructors with completely general components. The empty 
list is easy - sum of all the elements in the empty list is zero.  
 sum nil   = 0 
In the cons case we need to consider the value of sum(h::t). Where h is the head of the 
list - in this case an integer - and t is the tail of the list - i.e. the rest of the list. In 
constructing recursive functions we can assume that the function works for a case which 
is in some sense "simpler" than the original. This leap of faith becomes easier with 



practice. In this case we can assume that function sum works for t. We can use the value 
sum t on the right hand side of the definition.  
 sum(h::t) = ??? sum(t); 
We are looking for an expression which is equal to sum(h::t) and we may use sum t in 
that expression. Clearly the difference between sum(h::t) and sum(t) is h. That is, to 
get from sum(t) to sum(h::t) simply add h  
fun sum nil   = 0 
| sum(h::t) = h + sum t; 
 
  

appending (joining) two lists 

The infix append function @ is already defined however we may derive its definition as 
follows The append operator joins two lists, for example  
[1,2,3] @ [4,5,6] = [1,2,3,4,5,6] 
The definition of an infix operator allows the left hand side to be written in infix. Given 
two parameters we have a choice when it comes to deciding how to recurse. If we choose 
to recurse on the second parameter the equations will be  
fun x @ nil    = ?? 
| x @ (h::t) = ??; 
It turns out that this does not lead to a useful definition - we need to recurse on the first 
parameter, giving  
fun    nil @ x = ?? 
| (h::t) @ x = ??; 
The first equation is easy, if we append nil to the front of x we just get x. The second 
equation is more difficult. The list h::t is to be put to the front of x. The result of this is h 
cons'ed onto the list made up of t and x. The resulting list will have h at the head 
followed by t joined onto x. We make use of the @ operator within its own definition.  
fun    nil @ x = x 
| (h::t) @ x = h::(t @ x); 
Of course the @ operator is already defined. Note that the actual definition used is 
slightly different. Example: doublist Consider the function doublist which takes a list and 
doubles every element of it.  
doublist [5,3,1] = [10,6,2] 
Again we consider the two patterns nil and (h::t). The base case is nil  
 doublist nil  = nil 
A common mistake is to think doublist nil is 0. Just by looking at the type we can see that 
this would be nonsense. The output from doublist must be a list, not an integer. In 
considering the cons case an example may help. Imagine the execution of a particular list 
say doublist [5,3,1]. We rewrite [5,3,1] as 5::[3,1] and consider the second equation.  
 doublist(5::[3,1]) = ??? doublist [3,1] 
Thanks to our faith in recursion we know that doublist[3,1] is in fact [6,2] and so we ask 
what do we do to [6,2] to get our required answer [10,6,2]. We answer "stick ten on the 
front".  
 doublist(5::[3,1]) = 10::doublist [3,1] 
Returning to the general case with h and t instead of 5 and [3,1]:  
 doublist(h::t) = 2*h :: doublist t 
  



if .. then .. else .. 

Sometimes pattern matching is not convenient. We may wish to compare values for 
example, in these cases the if .. then .. else .. structure is useful.  

The expression if B then S1 else S2 tests the boolean expression B, it returns the 
value of S1 or the value of S2 depending on the value of B.  

For example  

if 1 = 0 then "I am the pope." else "someone else is the pope."; 
Returns the string "someone else is the pope."  

The following function "tells us" about a string s. A palimdrome is a word which is the 
same backwards as forwards.  

fun pali s = if explode s = rev(explode s) then s ^ " is a palindrome." 
     else s ^ " is not a palindrome."; 
We can go further - the sentence is the same in both cases, except the substring "not " is 
missing in one case - this allows..  
fun pal2 s = s^" is "^(if explode s = rev(explode s) then "" else "not 
") ^ 
   "a palindrome."; 
In some languages the else part is optional - that would make no sense in ML as the 
expression must return a value.  

 

The @ operator 
The append operator is defined in the file "/usr/local/software/nj-sml-
93/src/boot/perv.sml" and is given as:  
  infixr 5 :: @ 
  fun op @(x,nil) = x 
    | op @(x,l) = 
    let fun f(nil,l) = l 
          | f([a],l) = a::l 
        | f([a,b],l) = a::b::l 
        | f([a,b,c],l) = a::b::c::l 
        | f(a::b::c::d::r,l) = a::b::c::d::f(r,l) 
     in f(x,l) 
 
    end 
This version may be shown to be equivalent to the simpler:  
  infixr 5 :: @ 
  fun nil   @ l = l 
  |   (h::t)@ l = h::(t@l) 
but it will run faster. 
 



 

Pattern matching and recursion  
When defining a function over a list we commonly use the two patterns  
fun lfun nil = ... 
| lfun(h::t) = ... lfun t ...; 
However this need not always be the case. Consider the function last, which returns the 
last element of a list.  
last [4,2,5,1] = 1 
last ["sydney","beijeng","manchester"] = "manchester" 
The two patterns do not apply in this case. Consider the value of last nil. What is the last 
element of the empty list? This is not a simple question like "what is the product of an 
empty list". The expression last nil has no sensible value and so we may leave it 
undefined. Instead of having the list of length zero as base case we start at the list of 
length one. This is the pattern [h], it matches any list containing exactly one item.  
fun last [h]  = h 
| last(h::t) = last t; 
This function has two novel features.  

Incompleteness  
When we enter the function as above ML responds with a warning such as  
std_in:217.1-218.23 Warning: match non exhaustive 
 h :: nil => ... 
 h :: t => ... 
The function still works, however ML is warning us that the function has not been 
defined for all values, we have missed a pattern - namely nil. The expression last nil is 
well-formed (that is it obeys the type rules) however we have no definition for it. It is an 
incomplete or partial function as opposed to the complete or total functions that we have 
seen thus far. You will naturally want to know how ML does treat the expression last nil. 
The warning given is a mixed blessing. Under certain circumstances a partial function is 
very useful and there is no merit in making the function total. However if we manage to 
compile a program with no warnings and avoid all partial functions we are (almost) 
guaranteed no run-time errors. The exhaustive checking of input patterns can be non-
trivial, in fact the algorithm which is used in non polynomial.  

Overlapping left hand sides  
As the pattern [h] is identical to the pattern h::nil we might rewrite the definition  
fun last(h::nil) = h 
| last(h::t)   = last t; 
Examining the patterns of the left hand side of the = we note that there is an overlap. An 
expression such as 5::nil will match with both the first equation (binding h to 5) and the 
second equation (binding h to 5 and t to nil). Clearly it is the first line which we want and 
indeed ML will always attempt to match with patterns in the order that they appear. Note 
that this is not really a novel feature as all of our first examples with the patterns x and 0 
had overlapping left hand sides.  



 

Conditions  
Where possible we use pattern matching to deal with conditions, in some cases this is not 
possible. We return to the function to convert present to past tense. The general rule - that 
we append "ed" does not apply if the last letter of the verb is "e". We can examine the last 
character of the input by applying explode then rev then hd. The improved version of past 
should give  
past "turn" = "turned" 
past "insert" = inserted" 
past "change" = "changed" 
The special case irregular verbs are dealt with as before:  
fun past "run" = "ran" 
| past "swim" = "swam" 
| past x = if hd(rev(explode x))="e" then x^"d" 
   else x^"ed"; 
  
 


