MAT 241 Section 07 Fall 2009 Exam I Review Sheet Exam Date 10/14/09 Review Session TBA

The first exam covers all material in Chapter 2. In addition, it may be useful to review the material from Chapter 1.

A. Secant Lines

For problems 1-3, a function and a point on its graph are given. Sketch the graph, and draw a secant line passing through the given point and another point on the graph of your choosing. What is the slope of the secant line?

1. $f(x) = x^2 + x$ (1,2) 2. $g(x) = \sin(x)$ (π , 0) 3. $h(t) = \ln(t) - 2$ (1,-2)

B. Limits

For problems 4-6, sketch a function that satisfies each of the given equalities.

4. $\lim_{x\to 0} f(x) = 1$ f(0) is undefined 5. $\lim_{x\to 1^+} g(x) = -1$ $\lim_{x\to 1^-} g(x) = 1$ g(1) = 16. $\lim_{x\to 2^+} h(x) = \infty$ $\lim_{x\to 2^-} h(x) = -\infty$ h(2) = 0

In problems 7-9, use limit laws to evaluate each limit.

7.
$$\lim_{x \to -1} 2x(x+1)$$

8. $\lim_{x \to 2} \frac{x^2 + 1}{x^2 - 1}$
9. $\lim_{t \to 3} \sqrt{t^3 - 9}$

In problems 10-12, find the one-sided limits of the function at the given point. Use this to sketch the graph of the function over the given interval.

10.
$$f(t) = -\frac{1}{t^2}$$
 $t = 0$ $[-1, 1]$
11. $g(x) = \frac{1}{x^2 - 1}$ $x = 1$ $[0, 2]$
12. $h(x) = \ln(x + 2)$ $x = -2$ $[-4, 0]$

In problems 13-15, a function is given. Evaluate the limit of each function at ∞ and $-\infty$. What geometric features of the graph of the function are described by these limits?

13. $f(x) = \frac{x+1}{x-1}$ 14. $g(t) = 2 \arctan(t)$ 15. $h(x) = e^{-x}$

C. Continuity

16. What sorts of discontinuities are exhibited by the functions in problems 4-6?

In problems 17-19, determine where the given function is continuous..

17.
$$f(t) = \frac{\sqrt{t-1}}{t-2}$$

18. $g(x) = \sqrt{x^2 + 1}$
19. $h(t) = \ln(\sin(t))$

In problems 20-22, use continuity to evaluate the given limit.

20. $\lim_{x \to 1} (x^2 + x) \ln(x)$ 21. $\lim_{x \to -\pi} \frac{\sin(x) + \tan(x)}{\cos(x)}$ 22. $\lim_{x \to 1} \ln(\sin(2 \arctan(x)))$

In problems 23 and 24, use the Intermediate Value Theorem to show that, given f(x), [a, b], and N, there is a < c < b with f(c) = N.

23.
$$f(x) = \sin(x)$$
 $[a, b] = [0, \pi/2]$ $N = 1/7$
24. $f(x) = x^3 - 2$ $[a, b] = [1, 2]$ $N = 0$

D. Derivatives

In problems 25-27, draw a graph of the function on the given interval, and then sketch its derivative.

25. $f(x) = \sin(x)$ $[-\pi, \pi]$ 26. $g(t) = \tan(t)$ $(-\pi/2, \pi 2)$ 27. $h(x) = \frac{1}{1+x^2}$ [-1, 1]In problems 28-30, evaluate the derivative of the given function at the given point.

28.
$$f(x) = x^3$$
 $x = 2$
29. $g(x) = \sqrt{x+1}$ $x = 0$
30. $h(x) = \frac{1}{x^2}$ $x = -1$

In problems 31-33, evaluate the derivative of the given function.

31.
$$f(x) = \frac{x^2}{2}$$

32. $g(x) = \sqrt{2x}$
33. $h(t) = \frac{1}{t+1}$